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1. Vectors and Transformations.

1.1. Body and space axes.

In ordinary 3-dimensional space, we require
six independent quantities to specify the config-
uration of a rigid body. (Take r1, r2, and r3 to
be vectors from the origin to each of three ref-
erence points in the body. If the body is rigid,
|r1 − r2|, |r2 − r3|, and |r3 − r1| are fixed, so the
number of independent quantities is only six.)
Three of these six may be identified with a vec-
tor R from the origin to some basic reference
point, e.g. the center of mass. The remaining
three quantities are orientation variables.

To study these orientation variables, we use
a set of unprimed “body axes” (x1, x2, x3) at-
tached to the rigid body, and a set of primed
“space axes” (x′1, x

′
2, x

′
3) using the same origin as

the body axes, but having their directions fixed
to be the same as those of a particular set of
external reference axes. The external frame is
usually taken to be inertial, i.e. not accelerating.
A point on the rigid body can be represented in
either coordinate system.

Going from one representation to another
requires a linear transformation:

x′1 = λ11x1 + λ12x2 + λ13x3

x′2 = λ21x1 + λ22x2 + λ23x3

x′3 = λ31x1 + λ32x2 + λ33x3

(1.1)

(We require the transformation to be linear so
that it does not depend on the dimensions of x
and x′.) Other notation for (1.1) is:

x′i =
3∑

j=1

λijxj

x′i = λijxj

where in the last expression summation from 1
to 3 over the repeated index j is assumed by con-
vention. In matrix notation, we could also write

x̃′ = Λx̃

where

x̃ =


x1

x2

x3


 x̃′ =


x′1
x′2
x′3




are column vectors, and

Λ =


λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33




is a 3× 3 matrix. Of course, the rules of matrix
multiplication are followed.

To test your understanding of matrix mul-
tiplication and the convention that repeated in-
dices are summed, consider the product

C = AB

where A, B, and C are 3× 3 matrices. Then the
ij element of C is given by

Cij = AikBkj .

1.2. Properties of the transformation matrix.

The nine matrix elements λ11 . . . λ33 depend
on only three (as yet unspecified) orientation
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variables. Therefore, there must be six equa-
tions that relate the matrix elements to each
other (more on that below). The physical signif-
icance of the λij is revealed by transforming the
unit vectors

ê1 =


 1
0
0


 ê2 =


 0
1
0


 ê3 =


 0
0
1




into the primed system, as usual by multiplying
them by Λ:

Λê1 =


λ11

λ21

λ31


 .

Therefore, λ11 is the projection of ê1 on the x′1
axis, λ21 is the projection of ê1 on the x′2 axis,
etc.

Using the well-known property of the dot
product

cos θab =
a · b
|a||b| ,

we obtain

λ11 = ê′1 · ê1 = cos θ1′1

λ21 = ê′2 · ê1 = cos θ2′1

λ31 = ê′3 · ê1 = cos θ3′1,

etc. That is, the λij are the direction cosines
relating axis i′ to axis j.

We return to the six equations relating the
λij to each other. These may be obtained from
trigonometry, or more instructively by consider-
ing the need to preserve the dot product under
transformation. In matrix notation,

a · b = ( a1 a2 a3 )


 b1

b2

b3


 = aibi.

It is useful to express the dot product in terms
of the transpose of a matrix. We denote the
transpose of A by At, following the definition

At
ij ≡ Aji,

signifying the interchange of rows and columns.
Then the dot product becomes

a · b = ãtb̃,

where, as usual, ã and b̃ are the column vectors.

Now we require that ãtb̃ remain invariant
in the primed system, related to the unprimed
system by the transformation Λ:

ã′ = Λã; b̃′ = Λb̃.

We want

ã′tb̃′ = ãtb̃.

To proceed further, we need to know how to
take the transpose of a product of matrices. In
general, for any two matrices A and B,

[(AB)t]ij = [AB]ji = AjkBki = (At)kj(Bt)ik

= (Bt)ik(At)kj = (BtAt)ij .

That is, the transpose of a product of matri-
ces is the product of the transposed matrices
multiplied in the opposite order:

(AB)t = BtAt.

Returning to the invariance of the dot prod-
uct, we have

ã′tb̃′ = (Λã)tΛb̃ = ãtΛtΛb̃.

This can be equal to ãtb̃ for all possible ã and
b̃ if and only if the product ΛtΛ reduces to the
unit matrix:

ΛtΛ = I.

If this condition is satisfied, Λ is said to be or-
thogonal. Expressed in component form, the
orthogonality requirement is

λtikλkj = λkiλkj = δij ,

where the Kronecker delta δij is 1 if i = j, 0
otherwise.
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Since i and j each can range through three
values, this last equation is really nine equations.
They are:

λ11λ11 + λ21λ21 + λ31λ31 = 1
λ12λ12 + λ22λ22 + λ32λ32 = 1
λ13λ13 + λ23λ23 + λ33λ33 = 1
λ11λ12 + λ21λ22 + λ31λ32 = 0
λ12λ11 + λ22λ21 + λ32λ31 = 0
λ11λ13 + λ21λ23 + λ31λ33 = 0
λ13λ11 + λ23λ21 + λ33λ31 = 0
λ12λ13 + λ22λ23 + λ32λ33 = 0
λ13λ12 + λ23λ22 + λ33λ32 = 0

As we expected, these nine equations are re-
ally only six, because the last three pairs are
identical.

The following complex generalizations are
useful in quantum mechanics and elsewhere:

transpose (At)ij ≡ Aji → adjoint (A†)ij ≡ A∗
ji;

orthogonality AtA = I → unitarity A†A = I;

symmetric At = A → Hermitian A† = A.

1.3. Parity inversion.

Now we consider the determinant of Λ. In
order to express the determinant in component
form, we need the Levi-Civita density εijk. This
object is most straightforwardly used in the cross
product:

a× b ≡ εijkêiajbk. (1.2)

Given the rules for cross products, it must be
true that

εijk =0 unless i �= j �= k

=1 for i, j, k = cyclic permutation of 1, 2, 3
= −1 for i, j, k = cyclic permutation of 3, 2, 1.

Using the Levi-Civita density, we can write
the determinant of a 3× 3 matrix as

detA ≡ |A| ≡ 1
3!
εijkAilAjmAknεlmn. (1.3)

As i, j, k, l,m, n each run from 1 to 3, there are
a total of 36 = 729 terms. However, because
the Levi-Civita density is usually zero, only 36
terms survive. Each is the product of three ma-
trix elements that come from rows and columns
which must be different. Each of these products,
for example A11A22A33, comes in six permuta-
tions, e.g. 123, 231, 312, 321, 132, 213. That’s
the reason for the 1/3! factor – only six of the
36 terms are not duplicates. Thus we confirm
that this expression for the determinant gives
the same result as does the standard “diagonal
lines” mnemonic.

Writing the determinant using the Levi-
Civita density enables us to conclude immedi-
ately that, for any 3× 3 matrix,

detA = detAt. (1.4)

(In (1.3), changing A to At just interchanges
i, j, k with l,m, n, yielding the same result.) It
is also true that

detAB = detAdetB. (1.5)

Equations (1.4) and (1.5) are true for (square)
matrices of any size.

Returning to the rotation matrix Λ,

1 = det I = detΛtΛ = (detΛ)2

±1 = detΛ.

An infinitesimal rotation,

Λ = I + E ; det E 
 1

must be of the class

detΛ = +1

since det I = +1. Any finite rotation can be built
up from infinitesimal rotations and so must also
have detΛ = +1. If instead we have a trans-
formation with detΛ = −1, it must be related
through a set of infinitesimal rotations not to I
but to the parity inversion matrix

P ≡


−1 0 0

0 −1 0
0 0 −1


 , detP = −1.
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1.4. Infinitesimal rotations.

Having found that the rotation matrix Λ
is specified by three independent quantities, we
arrive at a philosophical problem: can Λ be rep-
resented by a (3-component) vector, instead of
a matrix, or tensor? For example, its direction
could be the rotation axis, and its magnitude
could be the angle of rotation. The answer
turns out to be yes, but only if the rotation is
infinitesimal.

To pursue this question further, we are
reminded that, formally, a vector is any 3-
component object whose components transform
under rotations according to Λ. Vector addition
is commutative and associative; multiplication
by a scalar (invariant to rotations) is commu-
tative and distributive. The dot product is
commutative; and, as we see in (1.2), the cross
product is anticommutative,

a× b = −b× a,

due to the change of sign of εijk when any two
indices are switched.

If the rotation could be represented by a
vector, two successive rotations �λ1 and �λ2 would
be described by another vector which is their
sum �λ1 + �λ2. However, since vector addition is
commutative, �λ1 + �λ2 = �λ2 + �λ1, the order of
the rotations wouldn’t matter. But physically it
does! (Try rotating a book by 90◦ first through
a vertical axis, then through a horizontal axis;
and then vice versa.) On the other hand, if the
rotation were represented by a tensor, as in gen-
eral it is, we would ask that Λ1Λ2 �= Λ2Λ1, as is
generally the case, so that the order of rotations
would matter.

Infinitesmal rotations can be described by a
vector. Suppose

Λ1 = I + E1, det E1 
 1
Λ2 = I + E2, det E2 
 1.

Then the order of rotations doesn’t matter:

Λ1Λ2 = (I + E1)(I + E2)
= I + E1 + E2 + E1E2

≈ I + E1 + E2 (last term negligible)
= Λ2Λ1

Requiring Λ to be orthogonal demands that
E be antisymmetric:

I = ΛtΛ
= (I + Et)(I + E)
= I + Et + E + EtE
≈ I + Et + E

Et = −E .

An antisymmetric matrix has diagonal elements
equal to zero, with only three independent off-
diagonal elements. We choose the following
general form for the infinitesimal rotation:

E ≡


 0 −dΩ3 +dΩ2

+dΩ3 0 −dΩ1

−dΩ2 +dΩ1 0


 ,

where the d’s emphasize smallness.

With E in this form, application to the vec-
tor r of the infinitesimal rotation produces an
elegant formula:

r̃′ = Λr̃
= (I + E)r̃
= r̃ + E r̃

r̃′ − r̃ = E r̃

=


 dΩ2x3 − dΩ3x2

dΩ3x1 − dΩ1x3

dΩ1x2 − dΩ2x1




Defining r̃′ − r̃ ≡ dr̃′, this becomes

dr′ = d�Ω× r. (1.6)

In (1.6) d�Ω is a “vector” with components
defined by the matrix elements of E . Its direc-
tion is the axis about which the body (unprimed)
axes have been rotated relative to the space axes.
Equation (1.6) describes the difference dr′ be-
tween the description r′ of a space point as seen
in the space axes and the description r of the
same space point as seen in the (rotated) body
axes. If the space point is at rest in the body
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system, all its motion as seen in the space sys-
tem will be due to the body rotation and will be
“tangential”, or perpendicular to r:

v′
tang ≡ dr′

dt
=

d�Ω
dt

× r

≡ �ω × r,
(1.7)

where �ω is the angular velocity. More generally,
the space point will be moving with respect to
the body system. Then its velocity in the space
system will be the sum of the velocity in the
body system and the velocity due to rotation:

v′ = v + �ω × r

dP′

dt
=

dP
dt

+ �ω ×P
(1.8)

In the last equation, v′ has been replaced by
dP′/dt to emphasize that this transformation
rule is valid for any vector P′, not just the
position vector.

We can prove that �ω is a vector only by ex-
amining in detail its transformation properties
under coordinate rotation. It turns out that �ω is
a type of vector (“axial vector” or “pseudovec-
tor”) which is like an ordinary vector (“polar
vector”) exept that it does not change sign un-
der parity inversion. Another familiar example
of an axial vector is the magnetic field B.

1.5. Euler rotation.

As an example of a 3-dimensional rotation,
we introduce the Eulerian angles. The Euler ro-
tation is passive (axes are rotated, not objects)
and, by convention, it transforms from the space
axes to the body axes. This is the inverse of the
transformation we have been considering, so we
denote the Euler rotation matrix by Λt rather
than Λ:

x̃ = Λtx̃′.

The Euler rotation is useful because it simplifies
the analysis of certain problems such as tops,
and because it is an established convention.

The Euler rotation consists of three steps.
The first transformation, between the (′) and (′′)
frames, is a counterclockwise (“CCW”) rotation
about the 3′ axis by the first Euler angle φ. The
second transformation, between the (′′) and (′′′)
frames, is a CCW rotation about the 1′′ axis
(the “line of nodes”) by the second Euler an-
gle θ. The final step, a transformation between
the (′′′) and unprimed (body) frames, is a CCW
rotation about the 3′′′ axis by the third Euler
angle ψ. Note that, if θ were zero, the φ and ψ
rotations would occur about the same axis and
could be combined into a single rotation.

Expressed in rotation matrices,

x̃′′ =


 cosφ sinφ 0

− sinφ cosφ 0
0 0 1


 x̃′

≡ Λt
φx̃

′

x̃′′′ =


 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 x̃′′

≡ Λt
θx̃

′′

x̃ =


 cosψ sinψ 0

− sinψ cosψ 0
0 0 1


 x̃′′′

≡ Λt
ψx̃

′′′

(1.9)

Within each of these three matrices, the nontriv-
ial 2 × 2 submatrices are identical to the usual
two-dimensional rotation matrices that are used
for more elementary transformations.
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To obtain the full rotation matrix, one ap-
plies the individual rotations in order:

x̃ = Λt
ψΛ

t
θΛ

t
φx̃

′ = Λtx̃′.

Note that the first rotation, Λt
φ, is the right-hand

factor in the product of matrices. The elements
of the full rotation matrix, obtained by carrying
out the matrix multiplication, are:

Λt =


 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ

− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ
sin θ sinφ − sin θ cosφ cos θ


 (1.10)

2. Selective Review of Newtonian Mechan-
ics.

2.1. Definitions.

Newton’s laws are the consequence of the
definition of force

F ≡ dp
dt

≡ d

dt
mv (2.1)

in which the inertial mass m is the “resistance
to change in velocity” and is proportional to the
gravitational coupling constant, or gravitational

mass. By convention, this constant of propor-
tionality is unity. The fact that the two types of
mass are proportional to each other is a conse-
quence of general relativity and has been tested
by balancing materials of high and low atomic
number Z (in high Z materials, a larger fraction
of the mass is due to relativistic effects that de-
pend on the inertial mass). This proportionality
has been verified to better than one part in 1014.
Equation (2.1) can be integrated to solve routine
problems involving ballistics, rockets, etc.

The following analogies between linear and
angular motion are important:

Quantity Linear motion Angular motion

Coordinate r θ
Derivative of coordinate v ≡ dr/dt �ω ≡ êdθ/dt

(ê along axis of CCW rotation)
Momentum p ≡ mv L ≡ r× p
Derivative of momentum F ≡ dp/dt N ≡ dL/dt = r× F

Missing in the above table is the relation-
ship between L and �ω. For a sufficiently simple
rigid body (details later),

L = I�ω

where the moment of inertia I is a scalar. More
generally, L is not parallel to �ω, so I must be
a tensor, the “inertia tensor”, represented by a
symmetric 3× 3 matrix.

2.2. Relations between r, v, and �ω for a point
particle.

When the body is a point, no orientation is

defined, and only three coordinates are needed
to specify its position. We do not need body
axes, so, for the time being, we drop the primes
from the space axes.

Without the primes, Eq. (1.8) becomes

vtang = �ω × r.

Taking the cross product of r with it,

r× vtang = r× v = r× (�ω × r).

Using the “bac cab” rule,

a× (b× c) = b(a · c)− c(a · b),
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r× v = �ω(r · r)− r(r · �ω).

The last term is that part of r2�ω which is par-
allel to r. After this parallel part is subtracted,
what remains is the perpendicular part:

r× v = r2�ω⊥ to r

L = mr2�ω⊥ to r.

Even for a point particle, L is equal to mr2�ω
only if �ω is ⊥ to r.

2.3. Work and energy.

The work done on a particle on a path
between points 1 and 2 is

W12 ≡
∫ 2

1

F · dr ≡ T2 − T1,

where T is the kinetic energy 1
2mv2 and the in-

tegral is taken over the path. The vector force
field F is called conservative if it can obtained
from the gradient of a scalar field. The scalar
field is conventionally written as −U where U is
the potential energy. If the force is conservative,

F = −∇U

W12 =
∫ 2

1

−∇U · dr

= −(U2 − U1)
T2 − T1 = U1 − U2

T2 + U2 = T1 + U1,

(2.2)

and total energy T + U is conserved.

In the above situation in which F is conser-
vative,W12 is path-independent. More generally,
what conditions does path-independence of W12

place on F? We consider any path from 1 to 2,
combined with any other path from 2 back to
1. Since W12 is path-independent, and W21 =
−W12, it follows directly that the circuital inte-
gral of F around the combined path must vanish:

∮
F · dr =W12 +W21 = 0.

What conditions on F are imposed?

First, F must be velocity-independent. Oth-
erwise, we could negotiate the path 12 rapidly,
and 21 slowly, spoiling the cancellation. Second,
F must not depend explicitly on the time (as
opposed to implicitly, for example as a result of
particle motion). Otherwise, we could negotiate
paths 12 and 21 at different times, again spoil-
ing the cancellation. Finally, assuming that F is
both velocity- and time-independent, it must be
free of circulation in order that the circuital in-
tegral vanish. Qualitatively, a vector field with
circulation loops back on itself. To get a more
quantitative condition, we need Stokes’ theorem:∮

F · dr =
∫∫

(∇× F) · dA,

where the surface integral applies to any surface
bounded by the circuital path, and the element of
area dA points outward according to the right-
hand rule when applied to the loop. For the
right-hand integral to be zero for any path and
thus over any area, the integrand must vanish:

∇× F = 0.

The most general form of F with vanishing curl
is:

F = −∇U

because, formally,

∇× (∇U) = 0.

Thus we are back to the original definition of a
conservative force.

A qualitative evaluation of whether a vec-
tor field has circulation may not be completely
reliable. Consider the magnetic field outside a
long straight thin current-carrying wire oriented
along ẑ. The field points in the θ direction
and so obviously loops back along itself. How-
ever, since this field varies as 1/r, where r is
the perpendicular distance to the wire, it has
no curl and therefore no circulation away from
the singularity at r = 0. This can be seen from
evaluating the curl in cylindrical coordinates, or
more easily by noting that

∇×B = µ0j = 0,



8

since the current density j vanishes outside the
wire.

2.4. Conservation laws for multiparticle sys-
tems.

For a system of N particles i, 1 ≤ i ≤ N ,
the total momentum is

P =
∑
i

mivi,

where sums are understood to run from 1 to N .
The total force on the system is the time rate of
change of P:

Ftot =
dP
dt

=
∑
i

Fext
i +

∑
i,j

Fj
on i

where on the right-hand side we sum firstly over
external forces on the particles, and secondly
over forces on one particle from another.

However, by Newton’s third law (action =
reaction),

Fj
on i = −Fi

on j .

The last term is a sum over cancelling pairs and
therefore vanishes. Then

Fext ≡
∑
i

Fext
i =

d

dt

∑
i

mivi =
d2

dt2

∑
i

miri.

Defining

M ≡
∑
i

mi

R ≡ 1
M

∑
i

miri,

we obtain

Fext =M
d2R
dt2

. (2.3)

That is, the motion of the center of mass coor-
dinate R of a system of particles depends only
on the total external force Fext, as if the system
were merely a single particle located at that co-
ordinate. If the total external force is zero, the
velocity of the center of mass is constant.

Using the center of mass coordinate makes
further simplifications possible, in the form of
decomposition theorems. Consider the total an-
gular momentum

L =
∑
i

ri ×mivi.

Substitute

ri = R+ r∗i

vi =
dri
dt

=
dR
dt

+
dr∗i
dt

,

where r∗i is the coordinate of particle i with
respect to the center of mass coordinate R:

L =
∑
i

(R+ r∗i )×mi(
dR
dt

+
dr∗i
dt

).

Since ∑
mir∗i ≡ 0,

the two cross terms vanish, and

L = R×P+
∑
i

r∗i × p∗
i . (2.4)

That is, the total angular momentum is equal
to the angular momentum of the center of mass
plus the angular momentum with respect to the
center of mass.

A similar proof yields the decomposition
theorem for the kinetic energy:

T = 1
2M(

dR
dt

)2 +
∑
i

1
2mi(

dr∗i
dt

)2. (2.5)

The total kinetic energy is equal to the kinetic
energy of the center of mass plus the kinetic
energy with respect to the center of mass.

2.5. Gravitational potential due to a spherically
symmetric mass distribution.

The gravitational force on a point test par-
ticle of mass mt due to another point mass m is,
as usual,

F = −Gmmt

r2
êr,

where r is a vector from m (put at the origin)
to mt. To understand the force on mt due to a
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mass distribution, it is useful to consider Gauss’s
theorem for the surface integral of F:∮∮

F · dA =
∫∫∫

(∇ · F)dv (2.6)

The radial part of the divergence in spherical
coordinates is

∇ · F =
1
r2

∂

∂r
(r2Fr) + . . .

so that ∇·F vanishes except at the origin, where
it is singular. The spherical symmetry of the
gravitational force makes the left-hand side of
(2.6) easy to evaluate over a sphere of radius r:∮∮

F · dA = 4πr2−Gmmt

r2

= −4πGmmt =
∫∫∫

(∇ · F)dv

The last equality states that ∇·F, already shown
to be infinite at the origin, has a finite volume
integral. This means that it is proportional to
a 3-dimensional δ function δ3(r), whose volume
integral is defined to be unity:

∇ · F = −4πGmmtδ
3(r).

In the case of a mass distribution instead
of a mass point, the quantity mδ3(r), which has
dimensions mass per unit volume, is replaced
by ρ(r), the mass density. Equation (2.6) is
replaced by∮∮

F · dA =
∫∫∫

(−4πGmtρ(r))dv.

= −4πGmtM,

(2.7)

using the fact that the integral of ρ over the
volume is just the mass M inside.

If the mass distribution ρ(r) is spherically
symmetric, we can use a spherical surface of ra-
dius r again to evaluate the left-hand side of Eq.
(2.7). It becomes:

4πr2Fr(r) = −4πGmtM

Fgrav = −êr
GMmt

r2

(2.8)

This proves (without any messy integrations)
that the gravitational force due to a spherically
symmetric mass distribution is the same as that
from a point at the origin with the same mass,
provided that the force is observed outside the
mass distribution.

The gravitational field g is defined as the
gravitational force Fgrav divided by the test mass
mt. Thus it is analagous to the electrostatic field
in that its value is independent of the constant
(test mass or test charge) with which the test
particle couples to the field. Again, if the source
of the gravitational field is a spherically symmet-
ric distribution of total mass M ,

g = −êr
GM

r2
.

The potential Ugrav from which this gravitational
field is derived, defined by g ≡ −∇Ugrav, is

Ugrav = −GM

r
,

adopting the convention that Ugrav = 0 at
r = ∞.

3. Oscillations.

3.1. Differential equation for linear oscillations.

Any potential energy U(x′) can be expanded
about a minimum, for example at x′ = a:

U(x′) = U(a) + (x′ − a)
∂U

∂x′

∣∣∣
a
+

+ 1
2 (x

′ − a)2
∂2U

∂x′2

∣∣∣
a
+ . . .

Redefining U(a) ≡ 0, introducing x ≡ x′−a, and
expressing the (single-particle) kinetic energy as
T = 1

2mẋ2, energy conservation demands

E = constant = 1
2mẋ2 + 1

2kx
2, k ≡ ∂2U

∂x2

∣∣∣
0

dE

dt
= 0 = 1

2m(2ẋẍ) + 1
2k(2xẋ),



10

with the trivial solution ẋ = 0 and the nontrivial
solution

mẍ+ kx = 0.

Therefore the familiar “mass-spring” force equa-
tion is obtained for any potential that has a
minimum, provided that the excursions are kept
small.

Adding a viscous damping force and a driv-
ing force,

F damp
x = −bẋ
F drive
x = F0 cosωt,

and defining γ ≡ b/m, ω2
0 ≡ k/m, one obtains

the simple form

ẍ+ γẋ+ ω2
0x = (F0/m) cosωt. (3.1)

This is the “full” differential equation, in
the sense that it has a driving term on the right-
hand side (in the absence of a driving term, it
would be called “homogeneous”). We seek a par-
ticular solution xp of the full equation which is
nontrivial. In order to match boundary condi-
tions, later we will add a general solution xh of
the homogeneous equation. It will turn out that
xh vanishes at sufficiently large times; therefore
xp is the asymptotic solution as t → ∞.

3.2. Particular solution.

To avoid unnecessary algebra in solving this
equation, we will employ the complex exponen-
tial method. The first step is to substitute

xp = �(Ãeiω′t)

F0 cosωt = �(F0e
iωt),

where ω′ is some as-yet-undetermined trial fre-
quency, and Ã is complex to allow for differences
in phase between the driving force and the re-
sponse. We hope that it is possible to find a
solution for which Ã is time-independent, a hope
that will be fulfilled in this case. With these
substitutions, (3.1) is

−ω′2�(Ãeiω′t) + γω′�(iÃeiω′t) +

+ ω2
0�(Ãeiω

′t) = �((F0/m)eiωt).
(3.2)

As the second step, to avoid unnecessary al-
gebra, we choose to solve the complex equation
of which (3.2) is the real part, rather than (3.2)
itself:

−ω′2Ãeiω
′t + γω′iÃeiω

′t +

+ ω2
0Ãe

iω′t = (F0/m)eiωt.
(3.3)

A nontrivial solution is impossible unless ω′ = ω.
Then the eiωt factors cancel, and

Ã =
F0/m

(ω2
0 − ω2 + iγω)

.

This is written in terms of a magnitude and a
phase as

Ã =
F0/m

[(ω2
0 − ω2)2 + γ2ω2]1/2

eiα

≡ |Ã|eiα

α = − arctan
γω

ω2
0 − ω2

.

(3.4)

This result has the following properties: ω2|Ã|2
(which is proportional to the oscillator’s aver-
age rate of energy dissipation) reaches a peak of
value F 2

0 /γ
2m2 at the resonant frequency ω =

ω0. The half maximum of ω2|Ã|2 occurs when
(ω2

2 − ω2
0) = +γω2 or (ω2

1 − ω2
0) = −γω1. It fol-

lows easily that the full width at half maximum
(“FWHM”) of the resonant peak is ω2 −ω1 = γ.
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As for the phase, assuming

Q ≡ ω0

γ
� 1,

α starts just below zero at low frequency, falls
through −π/2 at resonance, and approaches −π
at high frequency. The abruptness with which
α crosses −π/2 increases as the resonance gets
sharper (i.e. as the “quality factor” Q gets larger;
note that Q increases when the damping de-
creases). In other words, the response Ã lags the
driving force by very little at low frequencies, by
90◦ at resonance, and by nearly 180◦ at high fre-
quencies. The final step is to substitute back for
xp:

xp = �(Ãeiωt)
= �(|Ã|eiαeiωt)
= |Ã| cos (ωt+ α)

(3.5)

with |Ã| and α as in (3.4).

In some texts, confusion is spread by an-
alyzing the peak in |Ã| rather than in ω2|Ã|2.
(The latter is physically the more meaningful
quantity, as it is proportional to the power dissi-
pated in the oscillator.) This confusion leads to
messy nonstandard definitions for the resonant
frequency and for the quality factor, which are
best ignored.

3.3. Homogeneous solutions.

Having found a nontrivial particular solu-
tion xp to the full equation, we turn to the gen-
eral solution xh to the homogeneous equation.
Since the right-hand side of the homogeneous
equation is zero, it is clear that the sum of xp
and xh will still satisfy the full equation. Taking
this sum is the easiest way to obtain a general
solution to the full equation.

The homogeneous equation is (3.1) without
the driving term:

ẍh + γẋh + ω2
0xh = 0. (3.6)

Using the same complex exponential method,
and ignoring the trivial solution Ã = 0, we obtain

−ω2 + iγω + ω2
0 = 0.

The solutions are given by the quadratic formula:

ω± =
iγ

2
±
√
ω2

0 − γ2

4
≡ iγ

2
± ωγ .

The discriminant, which can be written as
γ2(Q2 − 1

4 ), distinguishes three cases: (i) Q > 1
2

(“underdamped”); (ii) Q < 1
2 (“overdamped”);

(iii) Q = 1
2 (“critically damped”).

In the underdamped case, the discriminant
is positive and ωγ is real. The general solution is
an arbitrarily weighted sum of the two particular
solutions involving ω+ and ω−:

xh = e−γt/2�(Ã+e
iωγt + Ã−e

−iωγt).

The last factor can be written as a cosinusoid of
ωγt within a phase:

xh = Be−γt/2 cos (ωγt+ β), (3.7)

where the amplitude B and phase β are adjusted
to fit the boundary conditions.

In the overdamped case, the discriminant is
negative and ωγ is imaginary. Defining

γ± ≡ ω±
i

=
γ

2
±
√
γ2

4
− ω2

0 ,

xh again is an arbitrarily weighted sum of the
two particular solutions:

xh = C+e
−γ+t + C−e

−γ−t. (3.8)

Note that if γ/2 � ω0, or Q 
 1 (ultradamp-
ing), γ+ is close to γ while γ− is much smaller.

Finally, in the critically damped case, never
exactly achieved in practice, Q ≡ 1

2 , the discrim-
inant vanishes, and

ω+ = ω− = iγ/2,

xh = �(D̃e−γt/2).
(3.9)

This is only one solution; to get two adjustable
constants, necessary for a second-order differen-
tial equation, we must find another. This is
accomplished by writing (3.6), with γ = 2ω0, as

( d
dt

+ ω0

)( d
dt

+ ω0

)
xh = 0. (3.10)
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The solution (3.9) is a solution to

( d
dt

+ ω0

)
xh =

( d
dt

+ ω0

)
e−ω0t = 0.

If we had another solution s(t) such that

( d
dt

+ ω0

)
s(t) = e−ω0t,

then s(t) would also solve (3.10). Substituting
the trial solution s(t) = f(t) exp (−ω0t), we eas-
ily find f(t) = t. Then the general solution to
the critically damped case is

xh = D1e
−γt/2 +D2te

−γt/2. (3.11)

This is the transient response that designers of
mechanical ammeters, shock absorbers, etc., at-
tempt to achieve: it approaches the asymptotic
state as quickly as possible without overshoot.
Despite the brisk market in heavy-duty shocks,
putting them on your car merely moves the sus-
pension from critically damped to overdamped;
the ride becomes harsher but not better con-
trolled.

Once the solutions for these three cases are
developed, the applications tend to be routine.
Most fall in two classes: (i) steady-state response
to a periodic driving waveform, and (ii) transient
response to a non-periodic driving waveform,
i.e. a switch closing. Only occasionally is one
asked to combine (i) and (ii). If this happens, re-
member to match boundary conditions using the
sum of the particular and homogeneous solutions
xp(t) + xh(t), rather than using only the latter.

3.4. Fourier expansion of the driving term.

In problems of class (i), if the driving wave-
form is (co)sinusoidal the problem is already
solved, by (3.5). As an example of the solu-
tion of problems of this class, we consider a
non-sinusoidal driving force f(t) with period T
and zero average value. This problem is solved
by expanding f(t) in a Fourier series of sines
and/or cosines:

f(t) =
∞∑
n=1

fn cosωnt+ gn sinωnt;

ωn ≡ 2πn
T

.

(3.12)

The constants fn and gn can be found
using Fourier’s trick. For example, to find
fm, where 1 ≤ m ≤ ∞, multiply (3.12) by
(2/T ) cos 2πmt/T , and integrate over one period:

2
T

∫ T

0

dt cos
2πmt

T
f(t) =

=
2
T

∞∑
n=1

(
fn

∫ T

0

dt cos
2πmt

T
cos

2πnt
T

+

+ gn

∫ T

0

dt cos
2πmt

T
sin

2πnt
T

)
.

Using the orthonormality of the cosines and
sines,

2
T

∫ T

0

dt cos
2πmt

T
cos

2πnt
T

= δmn

2
T

∫ T

0

dt sin
2πmt

T
sin

2πnt
T

= δmn

2
T

∫ T

0

dt cos
2πmt

T
sin

2πnt
T

= 0,

all terms on the right-hand side vanish except
the cos 2 term with n = m. Then (and similarly
for gm),

fm =
2
T

∫ T

0

dt cos
2πmt

T
f(t)

gm =
2
T

∫ T

0

dt sin
2πmt

T
f(t).

(3.13)

Since the oscillator is linear, the solution
to a sum of driving terms is the sum of the
individual solutions:

xp =
∞∑
n=1

|ãn|[fn cos (ωnt+ αn) +

+ gn sin (ωnt+ αn)],

(3.14)

where

|ãn| =
1/m

[(ω2
0 − ω2

n)2 + γ2ω2
n]1/2

αn = − arctan
γωn

ω2
0 − ω2

n

.
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3.5. Response of the underdamped oscillator to
a δ-function drive.

As an example of a problem of type (ii), we
consider the response of an oscillator with Q > 1

2
to a δ-function driving term. An infinite force
Fδ is applied for an infinitesimal time such that
its time integral is a constant mv0:

Fδ(t) = 0 (t �= 0);
Fδ(t) = ∞ (t = 0);∫ ∞

−∞

Fδ(t)
m

dt = v0

(3.15)

This is equivalent to requiring

Fδ(t) = mv0δ(t),

where δ(t) is a one-dimensional Dirac delta func-
tion like the three-dimensional type discussed in
section 2.5. The action of this force may be sim-
ulated by striking a resting mass at t = 0 with a
hard object so that the mass obtains a velocity
v0. What are the boundary conditions?

Within the infinitesimal time interval that
F0(t) is nonzero, it is so large that all the other
forces are negligible in comparison to it. There-
fore, after that interval, the mass will acquire
the velocity v0. However, during the same in-
terval, the displacement

∫
v dt of the mass still

is infinitesimal, because v is finite. Taking the
origin of coordinates at the resting position, the
boundary conditions become

0 = x(0+); v0 = ẋ(0+).

Using Eq. (3.7),

0 = B cosβ

v0 = −γ

2
B cosβ − ωγB sinβ.

Solving for the constants,

β = π/2

B =
−v0

ωγ
.

Plugging these constants into (3.7) for the solu-
tion,

x(t) = 0 (t < 0);

= v0
e−γt/2 sinωγt

ωγ
(t > 0);

(ω2
γ ≡ ω2

0 − γ2/4).

(3.16)

3.6. Green function for the underdamped oscil-
lator.

For an underdamped oscillator initially at
rest, the solution (3.16) is just theGreen function
G(t) multiplied by v0. Associated with many ho-
mogeneous differential equations and boundary
conditions are unique Green functions. If the
Green function is known, the solution to the
differential equation, in the presence of any driv-
ing term, may be found by performing a single
integration.

Consider a linear differential operator Dt (in
the case just considered, Dt = d2/dt2 + γ d/dt+
ω2

0). The Green function G(t) is defined to be
the solution to the equation

DtG(t) ≡ δ(t).

Generalizing to a delta-function that peaks at
t = t′ rather than t = 0,

DtG(t, t′) ≡ δ(t− t′).

For an arbitrary driving term a(t), the solution
to the differential equation Dtx = a(t) is the
integral

x(t) =
∫ ∞

−∞
G(t, t′)a(t′) dt′, (3.17)

as is easily verified:

Dtx =
∫ ∞

−∞
DtG(t, t′)a(t′) dt′

=
∫ ∞

−∞
δ(t− t′)a(t′) dt′

= a(t).

In the last step we used the fundamental prop-
erty of the Dirac δ function∫ ∞

−∞
δ(t− t′)f(t′) dt′ = f(t)
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for any function f . That is, the (rest of the) inte-
grand is evaluated where the δ function becomes
infinite.

Returning to the underdamped oscillator,
for any driving term a(t) the solution obtained
with the help of the Green function is

x(t) =
∫ t

−∞

e−γ(t−t′)/2 sinωγ(t− t′)
ωγ

a(t′) dt′,

provided that the mass is at rest at the origin
before the driving force starts. We wrote the
upper limit of the integral as t rather than ∞
because G vanishes for t < t′.

For a practical application in which de-
termining the answer with adequate numerical
precision is the main objective, a solution in the
form of an integral is wholly acceptable. The
integral may be evaluated to arbitrarily high
precision using a digital computer.

You already know at least one other Green
function. In section 2.5 we found that the
gravitational potential U from a point mass
m is U = −Gm/r. The gravitational force
F = −mt∇U , where mt is a test mass, satisfies

∇ · F = −4πGmmtδ
3(r).

Then

−∇2
(
−mt

Gm

r

)
= −4πGmmtδ

3(r)

∇2 1
r
= −4πδ3(r)

∇2 1
|r− r′| = −4πδ3(r− r′),

where we have generalized the last equation to
allow the mass point to be located at any coordi-
nate r′. This demonstrates that the Green func-
tion G(r, r′) for the differential operator ∇2 is

G(r, r′) =
−1

4π|r− r′| ,

subject to the boundary condition G(∞, r′) = 0.
Correspondingly, a differential equation of the
general form

∇2f(r) = a(r),

where a is any driving term, has the Green
function solution

f(r) =
∫∫∫ −a(r′)

4π|r− r′|d
3r′,

where the integral is taken over all space.

3.7. Nonlinear oscillations.

In general, oscillatory motion occurs (for
example, in one dimension x) when the total en-
ergy E in a conservative system exceeds U(x)
only within a finite region. Within this region,
say xA < x < xB , the kinetic energy T is pos-
itive. At x = xA and x = xB , T vanishes; xA
and xB are the classical turning points.

The period of the motion may be deter-
mined by a simple integral. Starting from the
equation of energy conservation,

T = 1
2mẋ2 = E − U(x)

dx

dt
=
{ 2
m
[E − U(x)]

}1/2

T0

2
=
∫ tB

tA

dt

=
∫ xB

xA

dx{
2
m [E − U(x)]

}1/2
.

(3.18)

For simple harmonic motion, with U(x) =
1
2kx

2 and A = −B, the usual period T =
2π
√
m/k is easily obtained by doing the integral.

On the other hand, for a pendulum oscillating
through angles that are not negligibly small,
the integral for the period is not elementary.
With θ substituted for x, I for m, and U(θ) =
mgl(1−cos θ), it is an elliptic integral of the first
kind. This integral may be evaluated by using ta-
bles, or by Taylor-series expanding (1−cos θ). As
expected, to lowest order the Taylor expansion
merely recovers the simple-harmonic-motion pe-
riod. As a practical matter, fast digital computa-
tion usually obviates the need for tables or series
expansions in evaluating any of these integrals.

In addition to obtaining an integral solu-
tion for the period, one may solve the differ-
ential equation for nonlinear oscillation if it is
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only slightly nonlinear. The procedure used,
the method of perturbations, is more interesting
than this problem alone, because it is a fun-
damental method of classical and especially of
modern theoretical physics.

Consider an undamped linear oscillator un-
der the influence of a small additional nonlinear
force mλx2:

ẍ+ ω2
0x− λx2 = 0.

Here “small” means that |λx| 
 ω2
0 . Since λ is

small, we attempt to find a solution of the form

x(t) = x0(t) + λη(t)

0 = ẍ0 + ω2
0x0 − λx2

0 + λη̈ + ω2
0λη +

+ (terms of higher order in λ).

(3.19)

Since λ, though small, is a constant of oth-
erwise arbitrary size, x0 must solve the simple
harmonic equation ẍ0 +ω2

0x0 = 0. Assuming the
boundary condition ẋ0(0) = 0, the solution for
x0 is

x0(t) = A cosω0t.

Plugging x0 back into (3.19), the first two
terms vanish. Neglecting the higher-order terms,

λ(−A2 cos2 ω0t+ η̈ + ω2
0η) = 0

η̈ + ω2
0η =

A2

2
(cos 2ω0t+ 1),

using the relation 2 cos2 y = cos 2y + 1.

Ignoring the constant driving term on the
right-hand side, the last equation is the same as
(3.1) with γ = 0. The particular solution is (3.5)
with γ = 0:

η =
A2

2 cos 2ω0t

ω2
0 − (2ω0)2

+
A2

2ω2
0

.

The last constant is added to satisfy the constant
driving term. Simplifying,

η =
A2

2ω2
0

(
1− 1

3 cos 2ω0t
)
.

It is characteristic of the solution that η is
proportional to a power of the unperturbed am-
plitude A (in this case the square). It is also
characteristic that the presence of the nonlinear
term causes a perturbation to the response which
occurs at a harmonic of the fundamental fre-
quency ω0, in this case the second harmonic. In
general, departures from linearity cause an oscil-
lator to exhibit harmonic distortion, as is all too
obvious in a loudspeaker that is driven too hard.

The perturbation solutions to slightly non-
linear oscillators are rarely as straightforward
as in this example. Often η is found to con-
tain terms that increase indefinitely with t, so
that λη eventually cannot remain small. Nev-
ertheless, the main point of this example is to
introduce the method of perturbations. Reca-
pitulating, to solve a standard problem when a
small additional force or potential is introduced,
add a small new term to the standard solution,
plug into the differential equation, retain terms
to first order in smallness, take advantage of the
cancellations, and solve for the new term.

4. Calculus of variations.

4.1. Euler equation.

Initially we focus on the purely mathemati-
cal problem of finding the shape of a curve y(t),
where t is an independent variable not necessar-
ily equal to the time, such that the quantity

J ≡
∫ t2

t1

L(y, ẏ, t) dt

is stationary. Here L is an arbitrary, contin-
uously differentiable function of the indicated
variables. In other words, we seek a path y(t)
such that the integral of J = L(y, ẏ, t) doesn’t
vary as the path is varied infinitesimally. Usually
this means that J is minimized or maximized.

Consider all possible paths between (t1, y1)
and (t2, y2). To make the problem more specific,
consider only the subset of paths which begin at
fixed y1(t1) and end at fixed y2(t2). We param-
eterize these paths by a single variable α such
that, by convention, α = 0 for the “best” path,
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i.e. the path which produces a stationary value
for the above integral. We label the various
paths by α:

Jα =
∫ t2

t1

L
(
yα(t), ẏα(t), t

)
dt,

J(α) =
∫ t2

t1

L
(
y(α, t), ẏ(α, t), t

)
dt.

In the latter expression we have chosen to con-
sider J , y, and ẏ to be functions of the label α.
Both notations have the same meaning; in the
following we shall use the latter.

The requirement that α vanish when J is
stationary means that

∂J

∂α

∣∣∣
α=0

= 0, where

∂J

∂α
=
∫ t2

t1

[∂L
∂y

∂y

∂α
+
∂L
∂ẏ

∂ẏ

∂α

]
dt.

(4.1)

Performing a parts integration on the second
term, ∫

udv = uv −
∫
vdu

u =
∂L
∂ẏ

du =
d

dt

∂L
∂ẏ

dt

dv =
∂2y

∂t∂α
dt v =

∂y

∂α∫ t2

t1

∂L
∂ẏ

∂ẏ

∂α
dt =

∂L
∂ẏ

∂y

∂α

∣∣∣t2
t1

−

−
∫ t2

t1

∂y

∂α

d

dt

∂L
∂ẏ

dt.

The first term on the right-hand side vanishes
because, by assumption, y(t1) and y(t2) are the
same for every α. Finally,

∂J

∂α
=
∫ t2

t1

∂y

∂α

[∂L
∂y

− d

dt

∂L
∂ẏ

]
dt.

The next step is to multiply through by
an arbitrary small displacement δα and evaluate
the derivatives with respect to α at α = 0:

∂J

∂α

∣∣∣
α=0

δα =
∫ t2

t1

∂y

∂α

∣∣∣
α=0

δα
[∂L
∂y

− d

dt

∂L
∂ẏ

]
dt.

Defining
∂J

∂α

∣∣∣
α=0

δα ≡ δJ

∂y

∂α

∣∣∣
α=0

δα ≡ δy,

we have

δJ =
∫ t2

t1

δy
[∂L
∂y

− d

dt

∂L
∂ẏ

]
dt. (4.2)

We are now in a position to make the final ar-
gument. Because we are considering all possible
paths between (y1, t1) and (y2, t2), δy is a com-
pletely arbitrary displacement at each point on
the path. δJ can vanish only if the part of the
integrand that multiplies δy also vanishes, i.e.

0 =
∂L
∂y

− d

dt

∂L
∂ẏ

L = L(y, ẏ, t).
(4.3)

This is the celebrated Euler equation. When L
is equal to the Lagrangian T − U , J is called
the action and the Euler equation becomes the
Euler-Lagrange equation.

4.2. Example using Euler equation.

As an example of the use of the Euler equa-
tion, again considering a purely mathematical
problem, we minimize the surface of revolution.
The problem is easier to visualize if we temporar-
ily change the notation. Denote the independent
variable, usually t, as the (cylindrical) radius r;
and denote the generalized coordinate, usually
y, as the distance z along the (cylindrical) axis.
In this notation, the Euler equation is

0 =
∂L
∂z

− d

dr

∂L
∂ż

L = L(z, ż, r).

In this notation, the problem asks us to find
the curve z(r) with fixed endpoints z(r1) = z1,
z(r2) = z2, such that the surface of revolution
about the z axis has minimum area.
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Along the curve z(r), the path length is

ds = [(dr)2 + (dz)2]1/2

= dr[1 + ż2]1/2,

where ż means differentiation of z with respect
to the independent variable r. When rotated
about the z axis, this element of path length
produces an element of surface area

dA = 2πr[1 + ż2]1/2dr.

So the problem reduces to minimizing the inte-
gral ∫ r2

r1

r[1 + ż2]1/2dr,

subject to the condition that the endpoints z1

and z2 are fixed. Then the integrand is

L(z, ż, r) = r[1 + ż2]1/2.

Applying the Euler equation,

∂L
∂z

= 0 =
d

dr

∂L
∂ż

=
d

dr

żr

[1 + ż2]1/2

r0 = const =
żr

[1 + ż2]1/2

r2
0(1 + ż2) = ż2r2

r2
0 = ż2(r2 − r2

0)
dz

dr
=

r0

(r2 − r2
0)1/2

z = r0

∫
dr

(r2 − r2
0)1/2

= r0 cosh−1 r

r0
+ z0

r = r0 cosh
z − z0

r0
,

where r0 and z0 are constants determined by z1

and z2. This is the equation of a catenary (the
shape of the cables on a suspension bridge).

4.3. Equations of constraint.

An equation of constraint is an additional
equation introduced to constrain the generalized

coordinate y(t). Suppose, as before, we consider
the problem of making stationary the action J
when the integrand L is a function only of a sin-
gle coordinate y, its time derivative ẏ, and the
independent variable t. In this simplest case it
would be foolish to impose an equation of con-
straint, because the constraint would determine
y(t) by itself, and there would be nothing left
to make stationary. Therefore, equations of con-
straint are relevant only when L is a function of
two or more coordinates.

Suppose that L = L(y, z, ẏ, ż, t). Temporar-
ily, we will assume that no constraint equations
apply. Under these circumstances, the deriva-
tion of the Euler equations proceeds much the
same way as in section 4.1. The integrand in
Eq. (4.1) acquires four terms, because L must
be differentiated with respect to y, z, ẏ, and ż.
Equation (4.2) becomes

δJ =
∫ t2

t1

{
δy
[∂L
∂y

− d

dt

∂L
∂ẏ

]
+

+ δz
[∂L
∂z

− d

dt

∂L
∂ż

]}
dt.

(4.4)

Since each of the virtual displacements δy and
δz are independent, two Euler equations must
be satisfied for δJ to vanish:

0 =
∂L
∂y

− d

dt

∂L
∂ẏ

0 =
∂L
∂z

− d

dt

∂L
∂ż

L = L(y, z, ẏ, ż, t).

(4.5)

For n generalized coordinates, one obtains n
equations of the same form.

Now that we understand how to handle the
case of two generalized coordinates when there
is no equation of constraint, we return to the
main problem. We are faced with finding a path
y(t), z(t) that makes stationary the path integral
of L when the path’s endpoints are fixed – while
satisfying an additional equation that constrains
y and z. Unfortunately, the constraint equa-
tion can take many forms. If it is a differential
equation that is not of first order, the only hope
for doing the problem is to solve the constraint
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equation, or at least reduce it to first order by
changing variables. If the constraint equation is
a first-order differential equation

gy
dy

dt
+ gz

dz

dt
+ gt = 0, (4.6)

where gy, gz, and gt, like L, are functions of y,
z, ẏ, ż, and t, it can be solved by the method of
Lagrange undetermined multipliers, which is the
subject of the next section.

If the constraint equation is an algebraic
rather than a differential equation, G(y, z, t) = 0,
it is called holonomic and is merely a special case
of Eq. (4.6), since

gy ≡ ∂G

∂y
gz ≡ ∂G

∂z
gt ≡

∂G

∂t
.

Finally, if the constraint equation takes the form∫ t2

t1

G dt = constant, (4.7)

where G is a function of the same variables as
L, the problem can also be solved by using an
undetermined multiplier.

Before proceeding to discuss undetermined
multipliers, it is instructive to identify the dif-
ferential (nonholonomic) equation of constraint
for a physically meaningful example. Consider
a thin coin of radius R rolling upright on the
plane x = 0, where x̂ is up. The C.M. of the
coin is at (y, z). Let φ be the azimuth of the
coin, measured with respect to the point of con-
tact, and let θ be the orientation of the face
of the coin, measured with respect to the xz
plane. As long as the coin remains upright,
these four generalized coordinates define the po-
sition and orientation of the coin, and their four
time derivatives completely describe its motion.

If the surface x = 0 is frictionless, there need
be no equation of constraint relating the gener-
alized coodinates. However, if there is friction,
we might require that the coin be rolling with-
out slipping. In that case, for a particular choice
of sign for φ and θ, the constraint equations are:

−ẏ = Rφ̇ sin θ

−ż = Rφ̇ cos θ.

We cannot integrate and solve these equations
without solving the whole problem. However, we
can identify the coefficients gi in the notation of
Eq. (4.6). For these two equations of constraint,
they are, respectively,

gy = 1 gz = 0 gθ = 0 gφ = R sin θ gt = 0
gy = 0 gz = 1 gθ = 0 gφ = R cos θ gt = 0.

4.4. Method of Lagrange undetermined multi-
pliers.

In Eq. (4.4), when y and z were two inde-
pendent generalized coordinates, we argued that
δy and δz were independently arbitrary. This
yielded the two Euler equations in Eq. (4.5).
However, the presence of an equation of con-
straint which links y and z destroys that inde-
pendence. The constraint equation (4.6) links
the two virtual displacements:

gyδy + gzδz = −gtδt = 0.

The term on the right-hand side vanishes be-
cause the displacements occur at fixed time t for
each point on the path y(t), z(t).

Now we introduce the Lagrange undeter-
mined multiplier λ(t). For any λ it is obvious
that

(gyδy + gzδz)λ = 0.

Inserting this in Eq. (4.4),

δJ =
∫ t2

t1

{
δy
[∂L
∂y

− d

dt

∂L
∂ẏ

+ λgy

]
+

+ δz
[∂L
∂z

− d

dt

∂L
∂ż

+ λgz

]}
dt.

(4.8)
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Since δy and δz cannot be independent of each
other, we choose δy to be the independent vir-
tual displacement and δz to be the dependent
one. This means that the first square bracket in
Eq. (4.8) must vanish. Since λ is undetermined,
we are free to choose λ so that the second square
bracket in Eq. (4.8) vanishes too.

To summarize, the effect of introducing the
equation of constraint and the Lagrange unde-
termined multiplier is to increase the number
of unknown functions of t from two (y(t) and
z(t)) to three, with λ(t) included; and, corre-
spondingly, to increase the number of differential
equations from two to three:

0 =
∂L
∂y

− d

dt

∂L
∂ẏ

+ λgy

0 =
∂L
∂z

− d

dt

∂L
∂ż

+ λgz

0 = gy ẏ + gz ż + gt,

(4.9)

where the last equation is just a repetition of
Eq. (4.6).

4.5. Lagrange multiplier applied to integral
constraint.

Suppose the constraint equation is of the
integral form (4.7). Since the integral in that
equation is constant, as α is varied the virtual
displacement of the integral is zero. This means
that we can multiply the integrand G in (4.7) by
a constant undetermined multiplier Λ and add
it to the integrand L in the virtual displacement
of the action:

0 = δJ = δ

∫ t2

t1

(L+ ΛG) dt.

The resulting set of Euler equations is the same
as Eq. (4.5) with L replaced by L+ΛG. In their
derivation, which we do not elaborate here, the
addition of ΛG to L makes it possible to con-
tinue to regard the virtual displacements δy and
δz as independent, even in the presence of the
integral equation of constraint.

4.6. Alternate form of Euler equation.

Returning to the case in which the integrand
is a function of only one generalized coordinate,

L can vary with time both explicitly and also
through the time dependence of y or ẏ:

dL
dt

=
∂L
∂t

+
∂L
∂y

ẏ +
∂L
∂ẏ

ÿ.

Using the Euler equation (4.3) for ∂L/∂y,

dL
dt

=
∂L
∂t

+ ẏ
d

dt

∂L
∂ẏ

+
∂L
∂ẏ

ÿ

=
∂L
∂t

+
d

dt

(
ẏ
∂L
∂ẏ

)
−∂L
∂t

=
d

dt

(
ẏ
∂L
∂ẏ

− L
)
≡ d

dt
H.

(4.10)

If L is free of explicit time dependence, H = E,
where E is a constant. This equality can substi-
tute for the Euler equation in solving the same
extremization problem. It leads to much simpler
algebra in some cases.

If L is the Lagrangian T − U , and if t is
the time, H as defined in (4.10) is the Hamilto-
nian. If L is free from explicit time dependence,
the constant E is the conserved total mechanical
energy. If U is independent of ẏ (velocity-
independent potential) and if T is a quadratic
function of ẏ,

E = H ≡ ẏ
∂L
∂ẏ

− L

= 2T − (T − U) = T + U.

Under these conditions, the conserved total me-
chanical energy is the sum of kinetic and poten-
tial energies as expected.

5. Lagrangian mechanics.

5.1. Hamilton’s principle.

The foregoing discussion of the calculus of
variations, with or without equations of con-
straint, acquires physical relevance from a fa-
mous postulate by Hamilton. From now on, the
independent variable t will represent the time,
and the coordinates yi will be called generalized
coordinates. They are “generalized” in the sense



20

that any time-dependent quantity that helps to
define the state of a system (Cartesian coordi-
nate, spherical or cylindrical coordinate, Euler
angle, etc.) can be chosen as a generalized co-
ordinate. Not all the yi (1 ≤ i ≤ n) in the
same problem need to have the same dimension.
The path yi(t) followed by a system is called its
history.

For systems in which all the forces are
conservative, Hamilton’s principle states that the
history which the system actually will follow is
that which makes the action J stationary, where

J ≡
∫ t2

t1

L(yi, ẏi, t) dt. (5.1)

Here L is the Lagrangian T −U . The calculus of
variations supplies n Euler-Lagrange equations
that may be solved for the history:

d

dt

∂L
∂ẏi

=
∂L
∂yi

. (5.2)

As another choice, we may define the Hamil-
tonian, and, if ∂L/∂t = 0, we may use the
alternate equation

H(yi, ẏi) ≡ ẏi
∂L
∂ẏi

− L

= E = constant.
(5.3)

We accept Hamilton’s principle because it is
found to reproduce all solutions obtained using
Newtonian analysis, and because it agrees with
experimental observation for additional classes
of problem beyond the reach of Newtonian anal-
ysis. Hamiltonian analysis is also the historical
path to quantum mechanics.

Often T and U are generalized quadratic
functions of the yi and ẏi respectively:

T = 1
2Tij ẏiẏj U = 1

2Uijyiyj , (5.4)

where the Tij are functions only of the yi, and
the Uij are functions only of the ẏi. In this case
H = T + U , and the Euler-Lagrange equations
simplify to

Tij ÿj = −Uijyj . (5.5)

If, for some i, Tij = mδij and Uij = kδij , the
Euler-Lagrange equation for the ith Cartesian
coordinate looks like a component of ma = F:

mÿi = −kyi.

Evidently (d/dt)(∂L/∂ẏi) plays the role of the
rate of change of a momentum, and ∂L/∂yi plays
the role of a force. More generally, (∂L/∂ẏi) is
called a generalized momentum and (∂L/∂yi) is
called a generalized force. For example, if yi
is really an angle, the corresponding generalized
momentum is really an angular momentum, and
the generalized force is really a torque.

Equation (4.9) added Lagrange multiplier
terms to the Euler-Lagrange equations for the
case in which two generalized coordinates were
mutually constrained. More generally, there may
be n generalized coordinates yi and m constraint
equations, 1 ≤ j ≤ m:

gjidyi + gjtdt = 0. (5.6)

Each of the m × (n + 1) g’s is a function of the
2n+1 variables (yi, ẏi, t). The problem is solved
by adding n Euler-Lagrange equations each con-
taining m Lagrange multipliers λj :

d

dt

∂L
∂ẏi

=
∂L
∂yi

+ gjiλj . (5.7)

In addition to the generalized force ∂L/∂yi that
is derived from the potential U , the right-hand
side contains an additional term gjiλj (summa-
tion implied) which is the generalized force of
constraint Qi. This is the physical significance of
the Lagrange multipliers: when we solve for the
λ’s as well as the yi’s, we obtain the forces of con-
traint as well as the motion. To summarize, n+m
unknown functions yi(t) and λj(t) are solved by
n Euler-Lagrange equations containing Lagrange
multipliers, plus m equations of constraint.

Note that the generalized forces of con-
straint must do no work – otherwise we could no
longer continue to define the potential energy U .
For example, the force of constraint from a wall
must be normal rather than frictional.

5.2. The falling ladder.
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This interesting problem is solved straight-
forwardly by using the Euler-Lagrange equations
with a Lagrange multiplier. At t = 0 a ladder
of length h under the influence of gravity is re-
leased from rest. The bottom is in contact with
a frictionless floor y = 0. The top rests on a fric-
tionless wall x = 0 with which the ladder makes
an initial angle α0.

Part (a) of the problem is just a warm-up:
Assuming α 
 1, find α(t).

For this part we assume that the ladder re-
mains in contact with the wall. Then its position
is specified by only one generalized coordinate,
which we take as α. Then the C.M. of the lad-
der is at x = (h/2) sinα, y = (h/2) cosα. The
Lagrangian is:

L = T − U

= Ttrans + Trot − U

= 1
2mv2 + 1

2Iω
2 − U

= 1
2m(ẋ2 + ẏ2) + 1

2 (
1
12mh2α̇2)− 1

2mgh cosα

= 1
8mh2α̇2 + 1

24mh2α̇2 − 1
2mgh cosα

= 1
6mh2α̇2 − 1

2mgh cosα.

Applying the Euler-Lagrange equation (5.2),
d

dt
1
3mh2α̇ = 1

2mgh sinα

1
3mh2α̈ = 1

2mgh sinα

α̈ =
3g
2h

sinα ≈ 3g
2h

α

α ≈ α0 cosh

√
3g
2h

t,

where in the last equation the boundary condi-
tions have been applied.

Part (b) of the falling ladder problem is
more interesting: Without assuming α 
 1, find
the angle α1 at which the ladder leaves the wall.

We relax the requirement that the top of
the ladder rest against the wall by introducing
a second coordinate u, the distance between the
top of the ladder and the wall. The equation
of constraint imposed by the wall then is u ≥ 0.
Since inequalities are difficult to handle, we in-
stead impose the constraint u = 0. Using the
method of Lagrange multipliers, we solve for the
generalized force of constraint Qu = λgu. The
ladder will leave the wall when the wall exerts
no force on it, i.e. when Qu = 0.

Re-expressed in terms of α and u, the C.M.
coordinate y is the same, but x acquires the
extra term u. This leads to two extra terms

1
2mh cosαα̇u̇+ 1

2mu̇2

in T . The constraint equation is

gαdα+ gudu+ gtdt = 0
gα = 0 gu = 1 gt = 0.

When we include the Lagrange multiplier,
the Euler-Lagrange equation in α is unchanged,
since u̇ = 0 and gα = 0. The equation in u is

d

dt

[
1
2m(h cosαα̇+ 2u̇)

]
= λ(t)

− sinαα̇2 + cosαα̈ =
2
mh

λ(t).

In the second equation, we used the fact that
u̇ = 0. When the ladder leaves the wall, α ≡ α1,
and λ = 0. The Euler-Lagrange equation in u
becomes

α̈
∣∣
α1

= α̇2 tanα
∣∣
α1
.

Substituting for α̈ from the Euler-Lagrange
equation in α,

3g
2h

cosα
∣∣
α1

= α̇2
∣∣
α1
. (5.8)
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Equation (5.8) would solve the problem if we
could obtain a condition expressing α̇ in terms of
α. Then we would have an equation for α1 that
might be solved. Such a condition is provided
by the alternate form of the Euler-Lagrange
equation. Returning to the analysis in terms
of a single generalized coordinate α, appropriate
for the part of the motion in which the ladder
remains in contact with the wall, we define

H ≡ α̇
∂L
∂α̇

− L

= α̇ 1
3mh2α̇− 1

6mh2α̇2 + 1
2mgh cosα

= 1
6mh2α̇2 + 1

2mgh cosα = E,

where in the last equation we used the fact that
L does not depend explicitly on the time. Equat-
ing H above to H at (t = 0, α = α0, α̇ = 0),

1
6mh2α̇2 + 1

2mgh cosα = 1
2mgh cosα0.

Setting α = α1 and substituting Eq. (5.8) for α̇,

1
6mh2 3g

2h
cosα1 = 1

2mgh(cosα0 − cosα1)

3
2 cosα1 = cosα0

α1 = cos−1(2
3 cosα0).

If the ladder starts at a certain cosine, it leaves
the wall when the height of the ladder decreases
to 2

3 of its initial value. For example, if it starts
upright (at 0◦), it leaves at cos−1 2

3 = 48.2◦.

5.3. Cyclic coordinates and conservation laws.

In section 5.1 we identified ∂L/∂q̇i as a gen-
eralized momentum (we have substituted q̇i for
ẏi, following the notation traditionally used for
this topic). In fact, this generalized momentum
is given a longer name – the canonical momen-
tum conjugate to qi, or (more succinctly) pi.
The reason for the emphasis is that, when there
is no constraint equation and ∂L/∂qi vanishes,
the Euler-Lagrange equation requires that the
canonical momentum be conserved. L is said to
be cyclic in qi.

If a system is closed, the homogeneity of
spacetime requires the Lagrangian to be invari-
ant to displacements or rotations of the coordi-
nate system, and also to displacements in the

zero of time. Using the canonical momenta,
each of these invariance principles gives rise to a
conservation law.

Consider a displacement δx in all the linear
coordinates qjx in the x direction of the various
particles j. The Lagrangian is unchanged under
this displacement:

0 =
∂L
∂δx

=
∑
j

∂L
∂qjx

∂qjx
∂δx

=
∑
j

∂L
∂qjx

=
d

dt

∑
j

∂L
∂q̇jx

≡ d

dt

∑
j

pjx ≡ d

dt
Px.

(5.9)

(The first equation does not imply summation
over x, and the third equation uses the fact
that ∂qjx/∂δx = 1). Thus Px, the total linear
momentum in the x direction, is conserved.

Consider next a rotation εx about the x axis.
This is equivalent to a displacement εx in all the
angular coordinates θjx about the x axis of the
various particles j. By a similar derivation, in-
variance of the Lagrangian to this rotation leads
to the conservation of total angular momentum
Lx:

0 =
d

dt

∑
j

∂L
∂θjx

≡ d

dt

∑
j

ljx ≡ d

dt
Lx.

(5.10)

Finally, we saw in Eq. (5.3) that invari-
ance of L to a displacement in time t causes the
Hamiltonian H to be conserved. Thus H must
bear a canonical relationship to t similar to that
of Px to δx or of Lx to εx. However, the analogy
is not complete, because t plays a special role as
the independent variable upon which the q’s and
p’s depend.
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6. Hamiltonian mechanics.

6.1. Hamilton’s equations.

We have already introduced one equation
involving the Hamiltonian H. Equation (4.10)
defined H and obtained its time derivative:

dH(qi, q̇i, t)
dt

= −∂L(qi, q̇i, t)
∂t

. (6.1)

In Eq. (6.1), the Hamiltonian is (temporarily!)
considered to be a function of the same variables
as is the Lagrangian.

However, we are advised to put Eq. (6.1) on
the back burner, because H instead is normally
considered to be a function of the generalized co-
ordinates, their canonically conjugate momenta,
and the time: H = H(qi, pi, t). When expressed
in terms of the pi rather than the q̇i, the Hamil-
tonian may take on a different functional form.
For example, using polar coordinates r and θ, a
free particle has the Hamiltonia

H(r, θ, ṙ, θ̇, t) =
m

2
(
ṙ2 + r2θ̇2

)
H(r, θ, pr, pθ, t) =

1
2m
(
p2
r +

p2
θ

r2

)
.

Considering H to be a function of (qi, pi, t),
and L still to be a function of (qi, q̇i, t), we
examine the total differential of H:

H = q̇ipi − L

dH = q̇idpi + pidq̇i −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t

dt

= q̇idpi + pidq̇i − ṗidqi − pidq̇i −
∂L
∂t

dt

= q̇idpi − ṗidqi −
∂L
∂t

dt.

(6.2)
(In the third equality we made use of the Euler-
Lagrange equations.)

On the other hand, H formally is a function
of (qi, pi, t):

dH ≡ ∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt. (6.3)

Since H depends independently on qi, pi, and t,
Eqs. (6.2) and (6.3) must be equivalent term by
term. The result is Hamilton’s equations:

H = H(qi, pi, t)

q̇i = +
∂H
∂pi

ṗi = −∂H
∂qi

∂H
∂t

= −∂L
∂t

.

(6.4)

Note that the total and partial time deriva-
tives of H(qi, pi, t) (but not H(qi, q̇i, t)!) are
equivalent:

dH
dt

=
∂H
∂qi

q̇i +
∂H
∂pi

ṗi +
∂H
∂t

= −ṗiq̇i + q̇iṗi +
∂H
∂t

=
∂H
∂t

.

Therefore, the last of Hamilton’s equations is
written with equal validity using dH/dt or
∂H/∂t. In contrast, Eq. (6.1) considered H
still to be a function of (qi, q̇i, t); we do not
substitute the partial time derivative of H there.

6.2. The Poisson bracket.

Applied to straightforward problems that
are amenable to Lagrangian analysis, Hamil-
ton’s equations substitute two coupled partial
differential equations of first order for one Euler-
Lagrange equation – an ordinary differential
equation of second order. Usually, this is no
bargain. Most often, after manipulation, one
obtains from Hamiltonian analysis the same dif-
ferential equations that are found more easily
from the Lagrangian.

For more difficult problems, there exists a
prescription for making a canonical transforma-
tion to a new set of generalized coordinates Qi

and canonically conjugate momenta Pi, so that
(at least) all the Pi are constants of the motion.
Although Hamilton’s equations become trivial
when expressed in terms of the new variables,
finding the right canonical transformation re-
quires solving partial differential equations that
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are not trivial. This is the most powerful method
for analyzing problems in classical mechanics. It
is beyond the scope of a one-semester under-
graduate course.

For present purposes, the attraction of
Hamilton’s equations is that they encourage us
to think democratically about coordinates and
momenta, and that they reveal essential ideas
which led from classical to quantum mechanics.
The Poisson bracket is a good example of both
attractions.

Consider any quantity ρ(qi, pi, t) that is a
function of the same variables as H. Its total
time derivative is

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

=
∂ρ

∂t
+

∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

≡ ∂ρ

∂t
+ [ρ,H].

(6.5)

In the second equality we used Hamilton’s equa-
tions, and in the last we defined the Poisson
bracket of ρ and H,

[ρ,H] ≡ ∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

, (6.6)

as usual with summation over i implied. Equa-
tion (6.5) states that the implicit time derivative
of any function of (qi, pi, t) is given by the Pois-
son bracket of that function with H: the Hamil-
tonian is the unique function which controls the
time evolution of all other functions. (It is even
easier to see why dH/dt = ∂H/∂t, as noted in
the previous section: the Poisson bracket of H
with itself obviously vanishes.)

In quantum mechanics, if ρ were an opera-
tor, one would write

dρ

dt
=

∂ρ

∂t
+

1
ih̄
[ρ,H],

where [ρ,H] ≡ ρH−Hρ is the commutator of ρ
with the Hamiltonian operator. The quantity h̄,
with the same dimension as pq, is Planck’s con-
stant h divided by 2π. Thus the Poisson bracket

is the quantity in classical mechanics that led to
the quantum mechanical commutator.

6.3. Phase space.

Consider a system of n particles in three-
dimensional space. This system is described by
a set of 6n variables {qi, pi}, where, for example,
i = 12 3 for x y z of the first particle, 4 5 6 for
x y z of the second particle, etc. The system is
represented as a single point in a 6n dimensional
space called phase space.

If we are required to consider an ensemble of
a large number N of identical systems, each sat-
isfying initial conditions that (in principle) could
be unique, the number (3nN) of Euler-Lagrange
equations becomes unwieldy. To learn about the
average behavior of these systems, we are mo-
tivated to consider the statistical properties of
the ensemble. Suppose that we prepare an en-
semble of N systems initially within a closed
boundary in 6n-dimensional phase space. The
ensemble can be visualized as a N points within
a 6n-dimensional bag. After a time, each system
evolves to a new point in phase space. The bag
also evolves to a new shape.

Our first conclusion is that any system that
initially lies within the closed boundary will
always lie within the (evolving) boundary: a
bounded system remains bounded. The reason
is simple: if at some time a system lies on a phase
space point which is part of the boundary, from
that time forward it must evolve with the bound-
ary. It cannot cross the boundary. Otherwise, we
would have two identical systems (one remain-
ing on the boundary, one crossing it) that evolve
differently given the same initial conditions.

6.4. Liouville’s theorem.

This celebrated theorem has wide-ranging
practical implications. It states that the vol-
ume in phase space occupied by an ensemble of
systems remains constant as the systems evolve,
when the Hamiltonian is constant or even when
it varies (smoothly) with time. Let ρ be the
number of systems per unit phase space vol-
ume. (As an aside, if each system were a spin
1
2 fermion such as an electron, which obeys the
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Pauli exclusion principle, the maximum value of
ρ would be 2h−3n, where the factor of 2 allows
the electron spin to point up or down.)

To analyze the evolution of ρ we need
the 6n-dimensional velocity vp and the 6n-
dimensional gradient operator ∇p:

vp ≡ q̂iq̇i + p̂iṗi

∇p ≡ q̂i
∂

∂qi
+ p̂i

∂

∂pi
,

where summation over i is implied as usual. In
the 6n-dimensonal space, the number N of sys-
tems is conserved: an increase in the density of
systems in a certain region requires a net flux
of systems into the region. This is expressed
quantitatively by an equation of continuity:

∂ρ

∂t
= −∇p · (ρvp). (6.7)

Using Eq. (6.5), the total time derivative of
ρ is

dρ

dt
=

∂ρ

∂t
+ [ρ,H].

Substituting for ∂ρ/∂t from Eq. (6.7),

dρ

dt
= [ρ,H]−∇p · (ρvp)

= [ρ,H]−
{ ∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

}
.

(6.8)

Using Hamilton’s equations for q̇i and ṗi, the
curly bracket in Eq. (6.8) is

∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

+ ρ
[∂q̇i
∂qi

+
∂ṗi
∂pi

]
.

The first two terms are just [ρ,H], cancelling the
Poisson bracket in Eq. (6.8). The terms in the
square bracket are equal, respectively, to

+
∂2H
∂qi∂pi

and − ∂2H
∂pi∂qi

.

These terms also cancel, provided that H varies
smoothly with qi and pi, so that the order of
differentiation does not matter.

We have proven Liouville’s theorem,

dρ

dt
= 0.

Since the phase space density ρ and the number
of systems N are constant, the volume N/ρ in
phase space must also be constant.

It is significant that the phase space volume
is proportional to the range in a particular gen-
eralized coordinate qj multiplied by the range in
its canonically conjugate momentum pj . Sup-
pose, at a certain time, that an ensemble of
systems occupies a range ∆qj and a range ∆pj .
Later, suppose that ∆qj decreases by a factor,
and there is no change in the range of other co-
ordinates qi and momenta pi with i �= j. Then
∆pj must increase by the same factor, so that

∆qj∆pj = constant. (6.9)

Nothing in classical mechanics suggests that ∆qj
or ∆pj should be interpreted as an uncertainty.
In the present context, each is merely the range
of values accessible to an ensemble of identi-
cal systems satisfying different initial conditions.
But if, for the moment, we were to entertain
such an interpretation, Eq. (6.9) would resemble
an uncertainty principle of the type Heisenberg
introduced to quantum mechanics. We would be
led to conclude that an uncertainty principle can
be written for the pair of quantum mechanical
operators corresponding to any pair of canoni-
cally conjugate classical variables. This turns
out to be the case.

As a simple application of Liouville’s theo-
rem, imagine a truncated cone of half-angle 
 1
that is perfectly reflecting on the inside. Ran-
domly directed, nearly monochromatic photons
enter the larger end. Naively, one might hope
that the photons would all be funneled down the
cone through the small end, yielding an intensi-
fied spot of light.

Liouville would reach a different conclusion.
At the larger end (area A), the photons entering
the cone already occupy a volume in momentum
space equal to that of a hemispherical shell with
a thickness corresponding to the small range in
photon |momentum|. At the smaller end (area
a), the emerging photons would occupy this
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same volume in momentum space. Since the vol-
ume in position (“configuration”) space is a/A
times smaller there, and the phase space density
must remain constant, only a fraction a/A of the
photons can emerge from the small end; the re-
mainder must be multiply reflected back to the
large end of the cone. (The condition that H
must vary smoothly with the qi and pi is equiv-
alent, in this problem, to the requirement that
the cone aperture may change significantly only
over a distance along the cone corresponding
typically to at least a few photon reflections.)

7. Central force motion.

7.1. Reduced mass.

We consider the central force problem with
two point masses m1 and m2 separated by a vec-
tor r pointing from m1 to m2. From the C.M.,
vectors r1 and r2 point to each mass respec-
tively, so that r = r2 − r1. The C.M. is defined
by m1r1 +m2r2 = 0.

In principle, the two-body system requires
six coordinates to describe it – three for the
C.M. coordinate R, and three e.g. for r. We
want to reduce this number in order to simplify
the analysis. By working in the C.M. system, we
eliminate R from further consideration. About
the C.M., either of the (parallel) angular mo-
menta L1 ≡ m1r1×ṙ1 and L2 ≡ m2r2×ṙ2 defines
the normal to the plane of relative motion. Since
the force between the bodies is central, it can
exert no torque about the C.M., so that L1+L2,
and therefore the plane of relative motion, must
remain invariant. As our two generalized coor-
dinates, we choose r and θ, the azimuthal angle
of r in the plane of relative motion.

In the C.M., the kinetic energy is

T = 1
2m1ṙ

2
1 +

1
2m1r

2
1 θ̇

2 + 1
2m2ṙ

2
2 +

1
2m2r

2
2 θ̇

2.

Substituting for r1 and r2 in terms of r, one
finds easily

T = 1
2µṙ

2 + 1
2µr

2θ̇2,

µ ≡ m1m2

m1 +m2
.

(7.1)

The quantity µ last defined is the reduced mass.
It is always between 50% and 100% of the smaller
of m1 and m2.

7.2. Constants of the motion.

Expressed in terms of the reduced mass, the
Lagrangian is

L = 1
2µ(ṙ

2 + r2θ̇2)− U(r), (7.2)

and the Hamiltonian is

H = ṙ
∂L
∂ṙ

+ θ̇
∂L
∂θ̇

− L

= 2T − (T − U) = T + U

= 1
2µ(ṙ

2 + r2θ̇2) + U(r).

In terms of the canonical momenta,

pr ≡
∂L
∂ṙ

= µṙ

pθ ≡ ∂L
∂θ̇

= µr2θ̇,

the Hamiltonian is more naturally written

H =
p2
r

2µ
+

p2
θ

2µr2
+ U(r).

Because the θ coordinate is cyclic (∂L/∂θ =
0), the Euler-Lagrange equation requires the
canonically conjugate momentum pθ (in this case
an angular momentum) to be conserved:

pθ = constant ≡ l. (7.3)

Because ∂L/∂t = 0, the Hamiltonian is constant
as well:

H = constant ≡ E

E =
p2
r

2µ
+

l2

2µr2
+ U(r)

E =
µṙ2

2
+

l2

2µr2
+ U(r).

(7.4)

This last equation involving the single coordi-
nate r is the basis of the analysis that follows.
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7.3. The repulsive pseudopotential.

We know that the term l2/2µr2 on the
right-hand side of Eq. (7.4) is part of the kinetic
energy. However, because it depends on r rather
than ṙ, it has the functional form of a poten-
tial energy, and is called the pseudopotential U ′.
Near the origin, U ′ is singular and positive, and
therefore repulsive.

If the actual potential U(r) is attractive
(negative), and is proportional to rn+1 with
−3 < n < −1, the sum of U and U ′ is +∞
at r = 0 and 0 at r = ∞, falling to a mini-
mum −|U0| at some finite radius r0. If E is
negative, the pair of masses is a bound system.
If E = −|U0|, all of the kinetic energy arises
from angular motion l2/2µr2

0 rather than radial
motion 1

2µṙ
2, and the masses are in a stable cir-

cular orbit. If E is larger than −|U0|, but still
negative, the radius of the orbit varies between
the perigee rmin and the apogee rmax. At each
of these classical turning points, E = U + U ′.
When n = −2, corresponding to a gravitational
or Coulomb potential, the orbit is an ellipse
when −|U0| < E < 0, a parabola when E = 0,
or a hyperbola when E > 0.

7.4. Period and orbit shape.

Defining

E ≡ 2µE
l2

; U ≡ 2µU
l2

,

Eq. (7.4) becomes

E = (
µṙ

l
)2 + r−2 + U(r)

l

µ

dt

dr
= (E − U(r)− r−2)−1/2

T
2

≡
∫ rmax

rmin

dt

=
µ

l

∫ rmax

rmin

dr√
E − U(r)− r−2

,

(7.5)

where T is the period of radial oscillation, not
necessarily equal to the gross orbital period even
if the orbit is closed.

Alternatively, setting

dθ

dr
=

dθ

dt

dt

dr
=

l

µr2

dt

dr
,

a similar integral gives the orbit shape θ(r):

θ2 − θ1 ≡
∫ r2

r1

dθ

=
∫ r2

r1

dr/r2√
E − U(r)− r−2

.

(7.6)

If U(r) = krn+1, with n = +5, +3, 0, −4, −5,
or −7, this is an elliptic integral found in ta-
bles. More importantly, numerical integration
can yield an arbitrarily precise orbit for any
well-behaved potential.

Conversely, substituting u ≡ 1/r, Eq. (7.6)
can be re-expressed as

−dθ = (E − U(u)− u2)−1/2du(du
dθ

)2 = E − U(u)− u2,
(7.7)

yielding the potential U(u), and thus the force
law, given the orbit shape u(θ).

7.5. Orbit for inverse square law force.

For the planetary case (U = −k/r), the or-
bit is easily expressed in closed form. Equation
(7.7) becomes

(du
dθ

)2 = E +
2µku
l2

− u2.

Differentiating with respect to θ and dividing
through by du/dθ �= 0 (noncircular motion), we
obtain

d2u

dθ2
+ u =

µk

l2
. (7.8)

The particular and homogeneous solutions are,
respectively,

up =
µk

l2

uh(θ) =
µk

l2
ε cos (θ − θ0),

where u̇(θ0) ≡ 0, and µkε/l2 is an adjustable
constant. Combining up and uh,

u(θ) ≡ 1
r(θ)

=
µk

l2
(1 + ε cos (θ − θ0)). (7.9)
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When 0 < ε < 1, this is the equation of an el-
lipse with eccentricity ε. The origin about which
θ is measured is one of its two foci. These are
located within the ellipse, but are well separated
from its center if ε is significantly greater than
zero, i.e. if the ellipse is eccentric.

7.6. Kepler’s laws.

We have already proven two of Kepler’s
laws. The first is that the areal velocity,

dA

dt
=

|r× dr|
2 dt

=
l

2µ
,

where dA is an increment of orbit area, is con-
stant. This follows directly from conservation of
angular momentum l. The second of Kepler’s
laws states that the orbits are ellipses with foci
at the origin, as shown in Eq. (7.9).

Our remaining objectives are to prove that
the total energy is a function only of the ma-
jor axis of the orbit ellipse, and to establish the
third and last of Kepler’s laws, which relates the
orbit period to the major axis. To proceed, we
evaluate Eq. (7.9) at θ = θ0 (perigee rmin), and
at θ = θ0 + π (apogee rmax):

rmin =
l2

µk(1 + ε)
; rmax =

l2

µk(1− ε)

a ≡ rmin + rmax

2
=

l2

µk(1− ε2)
,

(7.10)

where a is the semimajor axis. In terms of a, we
can rewrite

rmin = a(1− ε); rmax = a(1 + ε). (7.11)

At the perigee, where ṙ = 0, the total energy

is

E =
l2

2µr2
min

− k

rmin

=
l2

2µa2(1− ε)2
− k

a(1− ε)

=
ka(1− ε2)
2a2(1− ε)2

− k

a(1− ε)

=
k(1 + ε)
2a(1− ε)

− k

a(1− ε)

=
k

a(1− ε)

(1 + ε

2
− 1
)

= − k

2a
.

(7.12)

(In the third line we substituted l2/µ = ka(1−ε2)
from Eq. (7.10).) Therefore the total energy is a
function only of the semimajor axis.

To find the period, it is straightforward to
integrate Eq. (7.5). The same result is obtained
with less algebra by considering the orbit area A:

T =
A

dA/dt
=

πab

l/2µ
, (7.13)

where b is the semiminor axis. To evaluate b,
consider the right triangle with vertices at the
focus, the center of the ellipse, and the tip of the
semiminor axis. Its base is a− rmin = εa and its
height is b. The hypotenuse is just a, since the to-
tal distance from one focus via the elliptical curve
to the other focus is the same for any path. Then

a2 = ε2a2 + b2

b = a
√
1− ε2

T =
πa2

√
1− ε2

l/2µ

= 2πa2µ

√
1− ε2

l2

=
2πa2µ√
µka

= 2πa3/2

√
µ

k
.

(7.14)

(In the fifth equality, we used l2/(1− ε2) = µka
from Eq. (7.10).)

Equation (7.14), which is Kepler’s third law,
states that the orbital period is proportional to
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the 3
2 power of the semimajor axis. Neglect-

ing the tiny difference between the reduced mass
µ and the actual planetary mass, to which k
is proportional, this law predicts a planet’s pe-
riod given its orbit’s semimajor axis together
with the period and semimajor axis of any other
planetary orbit. Its success was one of the exper-
imental cornerstones of Newtonian mechanics.

7.7. Virial theorem.

For a circular orbit with a 1/r2 force, the fa-
miliar result T = −E = −U/2 is easily obtained
from Eqs. (7.4) and (7.8) with u̇ = 0. For an
elliptical orbit, both the potential and kinetic en-
ergies are functions of θ. To find a simple relation
between T , E, and U , we must consider the time
average values 〈T 〉 and 〈U〉 of the kinetic and po-
tential energies. For example, we may integrate

1
T

∫ T

0

U(t) dt =
1
2π

∫ 2π

0

U(θ)
dt

dθ
dθ

= − 1
2π

∫ 2π

0

k

r

µr2

l
dθ.

Inserting the elliptical orbit r(θ), the resulting
integral is found in tables, yielding 〈U〉 = 2E as
for the circular orbit.

A more elegant proof of this relation, with
extension to a variety of power-law potentials,
is provided by the virial theorem. Consider a
system of N particles indexed by j. Define

S ≡ pj · rj
dS

dt
= ṗj · rj + pj · ṙj
= Fj · rj + 2T,

(7.15)

where Fj is the force on particle j, and T is the
sum of the N kinetic energies.

Define the average value of dS/dt as

〈dS
dt

〉
≡ limt→∞

S(t)− S(0)
t

.

This is zero if all the pj and rj are bounded,
or if the motion is periodic with t chosen to be
an integral multiple of the period. Under either
condition, Eq. (7.15) requires

〈T 〉 = − 1
2 〈Fj · rj〉.

If Fj is derivable from a potential Uj which is
proportional to rn+1

j ,

Fj = −∇Uj = − (n+ 1)Uj r̂j
|rj |

Fj · rj = −(n+ 1)U

〈T 〉 = n+ 1
2

〈U〉,

(7.16)

where U is the sum of the N potential energies.
With n = −2 for the gravitational or Coulomb
potential,

〈T 〉 = − 1
2 〈U〉

E = 〈T + U〉 = 〈T − 2T 〉 = −〈T 〉,

as asserted above. Equation (7.16) is the virial
theorem, widely used in classical kinetic theory.

7.8. Stability of circular orbits.

We define the effective potential Ueff(r) ≡
U(r)+U ′(r), where, as in section 7.3, U ′(r) is the
pseudopotential l2/2µr2. Hamilton’s equation in
r becomes

H =
p2
r

2µ
+ Ueff(r)

ṗr = −∂H
∂r

= −dUeff

dr
.

(7.17)

Therefore a circular orbit, for which pr ≡ 0, is
possible only at an extremum of Ueff . If Ueff(r0)
is an extremum, close to that radius we may
expand

dUeff

dr
≈ (r − r0)

d2Ueff

dr2

∣∣∣
r=r0

≡ keff(r − r0)
µr̈ = ṗr = −keff(r − r0).

(7.18)

Near the extremum, if the second derivative keff

is positive (Ueff is a minimum), r−r0 experiences
simple harmonic motion with angular frequency
ωρ = (keff/µ)1/2. Then the circular orbit is sta-
ble. Otherwise, r − r0 grows exponentially, and
the orbit is unstable.
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As an alternative to the method of effective
potentials described above, one may also analyze
the stability of circular orbits using the method
of perturbations as in section 3.7. As an ex-
ample of both methods, we consider the motion
of a particle of mass m in a gravitational field
g = −gẑ. The particle is constrained to move
on the frictionless surface of an upward-opening
cone of half angle α.

In cylindrical coordinates (r, θ, z), the La-
grangian is

L = T − U = 1
2m(ṙ2 + r2θ̇2 + ż2)−mgz.

Applying the conical constraint z = r cotα, we
may eliminate z:

L = 1
2m(ṙ2 csc2 α+ r2θ̇2)−mgr cotα.

The coordinate θ is cyclic, so that its conjugate
momentum pθ = mr2θ̇ ≡ l is conserved. The
Euler-Lagrange equation in r is

d

dt

∂L
∂ṙ

=
∂L
∂r

mr̈ csc2 α = mrθ̇2 −mg cotα

r̈ − l2

m2r3
sin2 α = −g sinα cosα.

(7.19)

Since ∂L/∂t = 0, and T is a quadratic function
of ṙ and θ̇,

E = H = T + U

= 1
2m(ṙ2 csc2 α+ r2θ̇2) +mgr cotα

= 1
2mṙ2 csc2 α+

l2

2mr2
+mgr cotα.

(7.20)

The last two terms in the last equation sum
to Ueff , which is infinite both at r = 0 and
r = ∞. Therefore the intermediate extremum
(at r ≡ r0) must be a minimum, and a circular
orbit at radius r0 is stable.

Proceeding with the method of perturba-
tions, in Eq. (7.19) we substitute r = r0 + λρ,
where λ is a small constant. Retaining only
terms of 0th order in λ, Eq. (7.19) becomes

− l2

m2r3
0

sin2 α = −g sinα cosα. (7.21)

This may be solved for r0. The remaining terms
must also vanish:

0 = λρ̈− l2 sin2 α

m2r3
0

(
(r0/r)3 − 1

)
= λρ̈− l2 sin2 α

m2r3
0

(
(1 + λρ/r0)−3 − 1

)
≈ λρ̈+

l2 sin2 α

m2r3
0

3λρ
r0

= ρ̈+
3l2 sin2 α

m2r4
0

ρ

≡ ρ̈+ ω2
ρρ.

(7.22)

In the third line we expanded (1+ η)−3 ≈ 1− 3η
for η 
 1, and in the last line we identified the
angular frequency ωρ of radial oscillation.

The angular frequency of the unperturbed
orbit is Ω = l/mr2

0. Therefore

ωρ
Ω

=
√
3 sinα.

The orbit is closed only for particular cone half
angles such that ωρ/Ω is equal to a rational num-
ber m/n, where m and n are positive integers; n
revolutions are required to close the orbit.

In this problem, the frequency of radial os-
cillation could have been obtained equally well
using the method of effective potentials. But
the method of perturbations is more general: a
similar technique may be used to find the oscilla-
tion frequencies of deviations from unperturbed
orbits which are not circular.

8. Collisions.

8.1. Elastic collisions.

In the absence of external forces, all colli-
sions conserve total momentum (see section 2.4).
However, not all collisions are elastic. Elastic
collisions conserve total kinetic energy as well as
momentum.

Within the plane of scattering, given the ini-
tial momenta, a two-body elastic collision may
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be characterized by a single quantity, for exam-
ple the center of mass (C.M.) scattering angle.
Since the transformation between nonrelativistic
C.M. and laboratory angles is straightforward,
specifying any single final state quantity in the
laboratory (e.g. one final angle or energy) deter-
mines the whole problem. This can lead to a
large set of assigned problems for which the al-
gebra may be tedious but the conceptual basis
remains elementary.

It is amusing that the elastic scattering of a
nonrelativistic projectile from a stationary tar-
get of equal mass always results in an opening
angle of π/2 between the two final state ve-
locities. Label the projectile a, the stationary
target b, and the final state particles c and d.
According to the conservation laws,

Ta + (Tb = 0) = Tc + Td

⇒ 1
2m
(
p2
a = p2

c + p2
d

)
pa + (pb = 0) = pc + pd

⇒ p2
a = p2

c + p2
d + 2pc · pd.

For the second and fourth equalities to be consis-
tent, pc and pd must be mutually perpendicular.

8.2. Rutherford scattering.

By themselves, momentum and energy con-
servation determine the result of an elastic scat-
tering only if one final state quantity also can
be supplied. However, if the force law is known,
the final state can be predicted from the initial
conditions alone. The classic example is Ruther-
ford scattering of two charged particles under
the influence of the Coulomb force. In the C.M.,
consider a nonrelativistic projectile of charge ze
impinging with initial relative velocity v0 upon
a target of charge Ze. The electrostatic force
between them is centrally directed and of size
Zze2/r2 in Gaussian units.

This is not enough information to predict
the scattered final state, as we have not yet
specified whether the collision is “grazing” or
“head-on”. The missing quantity is the impact
parameter b ≡ l/µv0. It is named for the fact
that the undeflected path of the projectile misses

the target by the distance b. In terms of these
quantities, the constants introduced in section
7.5 become

k = −Zze2 E = 1
2µv

2
0 l = µbv0.

Again defining θ ≡ θ0 at the perigee rmin,
Eq. (7.9) requires ε < −1 when k is negative, as
it is here. Solving the first line of Eq. (7.12) for
rmin,

0 =
l2

2µ
r−2
min − kr−1

min − E

r−1
min =

k ±
√
k2 + 2El2/µ
l2/µ

=
−kµ
l2

(
√
1 + η2 − 1),

(8.1)

where

η ≡
√

2El2

µk2
=

µbv2
0

Zze2
. (8.2)

From Eq. (7.10),

r−1
min =

−kµ
l2

(−ε− 1). (8.3)

Comparing Eqs. (8.1) and (8.3),

−ε =
√
1 + η2. (8.4)

To keep r in Eq. (7.9) positive while k < 0, we
require

−ε−1 ≤ cos (θ − θ0)

cos−1 (1 + η2)−1/2 ≤ |θ − θ0|
tan−1 η ≤ |θ − θ0|.

(8.5)

Thus θ − θ0 varies only within a range

∆θ = 2 tan−1 η. (8.6)
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The scattering angle Θ is defined as Θ ≡
π−∆θ, so that Θ = 0 for a grazing collision and
Θ = π for a head-on collision. Then, combining
Eqs. (8.6) and (8.2),

Θ/2 = π/2−∆θ/2

= π/2− tan−1 η

= cot−1 η

= tan−1 Zze
2

µbv2
0

b =
Zze2

µv2
0

cotΘ/2.

(8.7)

This last equation connects the impact parame-
ter to the scattering angle.

8.3. Scattering cross section.

In Rutherford’s experiment, the projectiles
were 4He nuclei and the targets were 197Au nuclei
in a thin foil. The detectors were dark-adapted
students barely observing flashes in scintillat-
ing plates. Like more modern instruments, the
students could measure the scattering angle Θ,
but not the tiny impact parameter b. To inter-
pret his data, Rutherford needed to predict the
distribution of scattering angles.

Let Γ be the flux of incident projectiles
(particles/cm2-sec), and let dN be the number
of incident projectiles/sec with impact param-
eter between b and b + db and with azimuth
between φ and φ+ dφ. Using Eq. (8.7),

dN = Γb db dφ

dN

Γ
=
(Zze2

µv2
0

)2 cot Θ
2 d cot Θ

2 dφ

=
(Zze2

µv2
0

)2 cot Θ
2 csc2 Θ

2 dΘ
2 dφ

=
(Zze2

µv2
0

)2 cos Θ
2 sin Θ

2 csc4 Θ
2 dΘ

2 dφ

=
(Zze2

2µv2
0

)2 csc4 Θ
2 dΩ,

where dΩ ≡ sinΘ dΘ dφ = 4 sin Θ
2 cos Θ

2 dΘ
2 dφ

is an infinitesimal element of solid angle. The
quantity dN/ΓdΩ has the dimensions of an area

and is called the differential scattering cross sec-
tion dσ/dΩ:

dσ

dΩ
=
(Zze2

2µv2
0

)2 1
sin4 Θ/2

. (8.8)

This is the famous differential cross section for
Rutherford scattering. Physically, dσ is the cross
sectional area of the beam which is scattered by
the target through angle Θ into an element dΩ
of solid angle. The probability for a single 4He
nucleus to scatter into dΩ is Σ(dσ/dΩ)dΩ, where
Σ is the number of 197Au nuclei per square cm
of target foil.

Rutherford scattering has special properties
that deserve comment. First, like the gravita-
tional force, the 1/r2 Coulomb force is said to
have infinite range because the total scattering
cross section σT is infinite:

σT ≡ 2π
∫ π

0

dσ

dΩ
sinΘdΘ ∝

∫ π

0

sinΘdΘ
sin4 Θ/2

= ∞.

Second, in the quantum mechanical sense, the
individual charges on the projectile and target
nuclei act coherently to produce the scattering.
This follows from the fact that the differential
cross section is proportional to the square of z
and of Z. (In fact, the quantum mechanical
calculation for Rutherford scattering yields the
identical result.) The cross section is indepen-
dent of the sign of either charge.

The final comment is that dσ/dΩ is finite
at Θ = π: per unit solid angle, there is a finite
probability for backscattering. Using this strik-
ing prediction, Rutherford was able experimen-
tally to distinguish between a nucleus modeled to
be small in extent, relative to rmin, and another
more extended model for which backscattering
could not occur. At ever higher projectile en-
ergies, scattering of simple projectiles by ever
smaller targets has provided fundamental in-
sights. In the 1950’s, elastic scattering of ≈ 108

eV electrons determined the size and shape of
nuclei in exquisite detail. In 1968, quarks were
discovered in the inelastic scattering of ≈ 1010

eV electrons from protons.
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9. Rotational motion.

9.1. Pseudoforces in rotating systems.

The present discussion builds on the results
of section 1. Recall that x̃ is a column vector rep-
resenting a vector in the body (rotating) system,
while x̃′ is the same vector in an inertial (fixed)
system. At t = 0 the two coordinate systems
are coincident, so that x̃(0) = x̃′(0). At other
times, x̃ and x̃′ are related by a rotation, which
is represented by an orthogonal 3× 3 matrix Λ:

x̃′ = Λx̃. (9.1)

If the body system is rotating relative to
the inertial system with angular velocity �ω, and
P (P′) is the same vector observed in the rotat-
ing (fixed) system, recall that dP′/dt acquires
an extra term due to the rotation:

dP′

dt
=

dP
dt

+ �ω ×P. (9.2)

Choosing P(′) = r(′), Eq. (9.2) becomes

v′ = v + �ω × r. (9.3)

Alternatively, choosing P′ to be the left hand
side of Eq. (9.3), and P to be the right hand
side, Eq. (9.2) becomes

dv′

dt
=
( d
dt

+ �ω×
)(
v + �ω × r

)
F′

m
=

dv
dt

+ 2�ω × v + �ω × (�ω × r)

m
dv
dt

= F′ − 2m�ω × v −m�ω × (�ω × r)

≡ F′ + FCoriolis + Fcentrifugal.

(9.4)

When observed in the body frame, the mass ac-
celerates as though under the influence of pseud-
oforces FCoriolis and Fcentrifugal, in addition to
the actual force F′ acting in the inertial frame.

On the surface of the earth, which spins
with angular velocity �ωe directed out of the
north pole, the centrifugal force points outward
from the axis with magnitude mω2

ere sinλ =
0.003455mg sinλ, where re is the earth’s radius,

λ is the colatitude (measured from the north
pole) and g is the gravitational acceleration at
the surface. The magnitude of the effective (ap-
parent) acceleration geff ≡ g + Fcentrifugal/m is
slightly reduced, especially for colatitudes near
π/2. This causes the earth to bulge near the
equator. The direction of geff also shifts slightly.
For example, in the northern hemisphere, geff

intersects the earth’s axis slightly south of its
center.

The Coriolis force is proportional to veloc-
ity. In the northern hemisphere (0 < λ < π/2),
falling bodies experience a force 2mωev sinλ to
the east, and bodies moving horizontally feel
a Coriolis force whose horizontal component is
2mωev cosλ to the right. In the southern hemi-
sphere, cosλ reverses sign and the horizontal
Coriolis force is to the left. The Coriolis force
accounts e.g. for the counterclockwise circulation
of storms in the northern hemisphere: as an el-
ement of air is sucked into the low-pressure eye,
it veers right. As it happened, gunnery tables
available to the U.S. Navy at the time of early
south Pacific battles in WW II were written only
for the northern hemisphere. The seriousness of
this blunder was diminished by the emerging
dominance of air power.

9.2. Foucault pendulum.

If a freely pivoting pendulum is placed at
the north pole, as viewed in an inertial frame
it oscillates in a fixed plane while the earth ro-
tates underneath it. Correspondingly, on the
earth, its plane of oscillation is observed to pre-
cess with angular velocity −�ωe. If the pendulum
is placed at the equator, its plane is not observed
to precess with respect to the earth’s surface, be-
cause the equator is a symmetry point at which
a preferred direction for this precession cannot
be identified. More generally, if this Foucault
pendulum is placed at colatitude λ, its plane
of oscillation precesses clockwise (“CW”) rela-
tive to the earth’s surface with angular velocity
ωe cosλ. At least, this guess is consistent with
the two limiting cases just considered.

To analyze this problem further, consider a
local (unprimed) coordinate system with its ori-
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gin on the earth’s surface at colatitude λ. We
take the ẑ direction to be normal to the surface
(ignoring centrifugal forces). In this frame, ωe
lies in the z-north plane at angle λ to ẑ. Includ-
ing the Coriolis force, the pendulum bob satisfies
the equation

r̈ = −gẑ + T
m

− 2�ωe × ṙ

≈ −gẑ + T
m

− 2ωe cosλ ẑ × ṙ,

where T is the string tension. In the second
equality we used the fact that ṙ lies mainly in
the horizontal plane, assuming small-angle oscil-
lations.

The final step is to analyze the same prob-
lem in a (starred) system having the same
origin, which is precessing CW with respect
to the earth’s surface with angular velocity
�Ω = −ẑωe cosλ. The equation of motion of
the pendulum bob becomes

r̈∗ = −gẑ + T
m

− 2ωe cosλ ẑ × ṙ∗ − 2�Ω× ṙ∗.

The last two terms cancel, and the resulting
equation is that of a simple pendulum. In the
starred system, the plane of oscillation does not
precess. Therefore, in the unprimed system, the
plane of oscillation precesses CW with the same
angular velocity ωe cosλ as does the starred sys-
tem. This justifies the original assertion.

Large Foucault pendula with slowly precess-
ing planes of oscillation are staples of many sci-
ence museums. By observing the angle through
which the pendulum has precessed, you can mon-
itor the duration of your visit, or, with the help
of a watch, measure the museum’s latitude.

9.3. Angular velocity from Euler rotations.

Recall from section 1 that the Euler rotation
Λt is a transformation from the space (inertial)
frame to the body frame, by means of three
successive transformations:

x̃ = Λt
ψx̃

′′′

= Λt
ψΛ

t
θx̃

′′

= Λt
ψΛ

t
θΛ

t
φx̃

′

≡ Λtx̃′,

(9.5)

where Λt
ψ, Λ

t
θ, and Λt

φ are defined in Eq. (1.9).
In order to solve problems in the body system,
we need to compute the Cartesian components
there of the angular velocity �ω that results when
the Euler angles φ, θ, and ψ vary with time.

The angular velocities in question are di-
rected along the 3′, 1′′, and 3′′′ axes, respectively.
Transforming all three to the body system,


ω1

ω2

ω3


 = Λt

ψΛ
t
θΛ

t
φ


 0

0
φ̇


+

+ Λt
ψΛ

t
θ


 θ̇
0
0


+ Λt

ψ


 0

0
ψ̇




=


 φ̇ sin θ sinψ + θ̇ cosψ
φ̇ sin θ cosψ − θ̇ sinψ

φ̇ cos θ + ψ̇


 .

(9.6)

We shall use this relation in the study of tops.

9.4. Angular momentum of a rigid body.

About the origin, N point masses at space
coordinates r′i (1 ≤ i ≤ N) have combined angu-
lar momentum

L =
N∑
i=1

mi(r′i × ṙ′i). (9.7)

We would like to express L in the body system of
coordinates. In that system, if the point masses
make up a rigid body, we can take advantage of
whatever symmetries the body might possess.

If the motion of the body system is limited
to a simple rotation characterized by angular
velocity �ω, we choose the origins of the space and
body axes to be the same. In addition, we choose
to consider L at an instant of time when the two
systems are entirely coincident. This means that
ri = r′i for all i at that time, but of course ṙi �= ṙ′i.
Assuming that the body is rigid, ri is a constant
in the body system. Equation (9.3) becomes

ṙ′i = �ω × ri. (9.8)
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The angular momentum may be written

L =
∑
i

mi

(
ri × (�ω × ri)

)
=
∑
i

mi

(
�ω(ri · ri)− ri(ri · �ω)

)
.

(9.9)

Changing to matrix notation in Cartesian
coordinates, with L̃, r̃, and ω̃ representing col-
umn vectors, and with I as the unit matrix,

L̃ =
∑
i

mi

(
r2
i ω̃ − r̃i(r̃ti ω̃)

)
=
∑
i

mi

(
r2
i Iω̃ − (r̃ir̃ti)ω̃

)
=
(∑

i

mi(r2
i I− r̃ir̃

t
i)
)
ω̃

≡ Iω̃
I ≡

∑
i

mi

(
r2
i I− r̃ir̃

t
i

)
.

(9.10)

In the above we have introduced the inertia ten-
sor I, which relates the angular momentum to
the angular velocity of a rigid body.

Because the matrix notation in Eq. (9.10)
can be cryptic, it is useful to display I in com-
ponent form:

r̃ir̃
t
i =


xi1x

i
1 xi1x

i
2 xi1x

i
3

xi2x
i
1 xi2x

i
2 xi2x

i
3

xi3x
i
1 xi3x

i
2 xi3x

i
3




Ijk ≡
∑
i

mi

(
δjkr

2
i − xijx

i
k

)
,

(9.11)

where e.g. xij is the j
th component (1 ≤ j ≤ 3) of

the coordinate ri of the ith mass. For example,

I11 =
∑
i

mi

(
r2
i − (xi1)

2
)

=
∑
i

mi

(
(xi2)

2 + (xi3)
2
)

I12 = −
∑
i

mix
i
1x

i
2.

What makes I a tensor is its transformation
property. If x̃ is a vector transforming from the

body to the space system according to x̃′ = Λx̃,
the inertia tensor transforms according to the
similarity transformation:

I ′ = ΛIΛt. (9.12)

9.5. Elementary properties of the inertia tensor.

Obviously, since I rarely is proportional to
the unit matrix, for arbitrary ω̂ the angular mo-
mentum L = I�ω rarely is directed along ω̂. It
is true that L ‖ �ω in many elementary problems;
this occurs when �ω is directed along one of the
principal axes of the body, defined later on.

A simple example with L not parallel to �ω is
a barbell rotating about a vertical axis through
its center. The bar is inclined at an angle ψ to
the horizontal, so that one weight orbits the axis
in an higher plane than does the other. For each
weight, L = r×pmust be ⊥ to the bar, so Lmust
make the same angle ψ with the axis of rotation.

When L = I�ω, where I is the scalar mo-
ment of inertia, the kinetic energy of rotation is
Trot = 1

2Iω
2. More generally,

Trot = 1
2

∑
i

mi(v′i)
2

= 1
2

∑
i

miv′
i ·

dr′i
dt

= 1
2

∑
i

miv′
i · (�ω × r′i)

= 1
2

∑
i

mi�ω · (r′i × v′
i)

= 1
2�ω ·

(∑
i

mir′i × v′
i

)
= 1

2�ω · L
= 1

2�ω · (I�ω)
= 1

2 ω̃
tIω̃.

(9.12)

Defining ñ to be a unit column vector along �ω,
Eq. (9.12) becomes

Trot = 1
2ω

2ñtIñ
≡ 1

2Iω
2

I ≡ ñtIñ.
(9.13)
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As a bonus, Eq. (9.13) relates the inertia tensor
I to the scalar moment of inertia I about a par-
ticular axis of rotation. However, while useful for
calculating Trot, this scalar I obviously cannot
be employed to relate L to �ω in the general case.

So far we have been considering a rigid body
to be a collection of discrete masses, for which
the inertia tensor is given by Eq. (9.11), repeated
below. The same equation for a continuous mass
distribution is obtained by replacing the sum
over mi by an integral over the mass density ρ:

Ijk =
∑
i

mi

(
δjk

3∑
l=1

(xil)
2 − xijx

i
k

)

=
∫
dx1

∫
dx2

∫
dx3

(
ρ(x1, x2, x3)×

×
(
δjk

3∑
l=1

(xl)2 − xjxk
))
.

(9.14)

The integral is taken over the entire volume of
the rigid body. It is usually easy to evaluate un-
less the boundaries of the body are not readily
expressible in terms of the Cartesian coordinates
x1, x2, and x3. In that event, it may be neces-
sary to transform the integral to cylindrical or
spherical coordinates.

9.6. Diagonalization of the inertia tensor.

In this section we prove, for any rigid body,
that there exist three orthogonal unit vectors s̃r,
1 ≤ r ≤ 3, such that

I s̃r = er s̃r, (9.15)

where er is a real constant called the rth eigen-
value. The s̃r are the eigenvectors – the direc-
tions of the body’s principal axes. When the
rigid body rotates about any of its principal
axes, L and �ω are parallel:

L̃ = Iω̃ = I(ωs̃r) = er(ωs̃r) = erω̃.

(Summation over r is never implied!) This sim-
ple relationship between L and �ω is so advan-
tageous that we almost always use the principal
axis frame when we work in the body system.

If the eigenvalue equation (9.15) is satisfied,

0 = I s̃− es̃ = (I − eI)s̃
= (I − eI)s̃s

= det
(
(I − eI)s̃s

)
= det (I − eI) det (s̃s)

0 = det (I − eI).

(9.16)

This “secular equation” is a cubic equation with
three roots e1, e2, and e3. Once it is solved
to yield these eigenvalues er, the eigenvectors s̃r
are obtained from the equations

(I − erI)s̃r = 0
s̃tr s̃r = 1.

(9.17)

The latter equality ensures that the eigenvectors
are of unit length.

First we prove that the eigenvalues of I
are real. Here Eq. (9.11) reminds us that I is
real and symmetric, and therefore self-adjoint:
I† = I . For brevity dropping the index r,

I s̃ = es̃

s̃†I s̃ = es̃†s̃

(s̃†I s̃)† = (es̃†s̃)†

s̃†(s̃†I)† = e∗s̃†s̃

s̃†I†s̃ = e∗s̃†s̃

s̃†I s̃ = e∗s̃†s̃

es̃†s̃ = e∗s̃†s̃

e = e∗.

Obviously the eigenvectors s̃r also can be de-
fined to be real, since everything else in the
linear Eq. (9.15) is real.

Next we prove that two eigenvectors s̃1 and
s̃2 corresponding to two different eigenvalues e1
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and e2 are orthogonal:

e1 �= e2

I s̃1 = e1s̃1

I s̃2 = e2s̃2

s̃t2I s̃1 = e1s̃
t
2s̃1

s̃t1I s̃2 = e2s̃
t
1s̃2

(s̃t1I s̃2)t = (e2s̃
t
1s̃2)t

s̃t2Its̃1 = e2s̃
t
2s̃1

s̃t2I s̃1 = e2s̃
t
2s̃1

0 = (e2 − e1)s̃t2s̃1

0 = s̃t2s̃1.

If the same eigenvalue is shared by two or more
different eigenvectors, it is easy to form linear
combinations of them to construct three mutu-
ally orthogonal eigenvectors. Thus the principal
axes of a rigid body are always orthogonal.

9.7. Principal axis transformation.

For simplicity, arrange the eigenvector signs
so that s1×s2 = s3. The reference frame defined
by these three unit vectors is called the princi-
pal axis frame. Denote it by two primes (′′). A
vector x̃′′ in the principal axis frame is related
to the same vector x̃ in the (unprimed) body
frame, in which I was originally calculated, by a
principal axis transformation:

x̃′′ = Λx̃ .

Since I is a tensor, I ′′ is related to I by a
similarity transformation:

I ′′ = ΛIΛt

ΛtI ′′ = IΛt
Λt

11 Λt
12 Λt

13

Λt
21 Λt

22 Λt
23

Λt
31 Λt

32 Λt
33




 e1 0 0

0 e2 0
0 0 e3


 =

= I


Λt

11 Λt
12 Λt

13

Λt
21 Λt

22 Λt
23

Λt
31 Λt

32 Λt
33


 . (9.18)

The first column of Eq. (9.19) is just the first
eigenvalue equation:

e1


Λt

11

Λt
21

Λt
31


 = I


Λt

11

Λt
21

Λt
31


 . (9.19)

Comparing Eq. (9.19) to Eq. (9.15), we see that
the column vector on either side of Eq. (9.19)
is proportional to the first eigenvector s̃1. Since
the transformation is orthogonal (ΛtΛ = I), this
constant of proportionality is unity. Therefore
the transpose Λt of the principal axis transfor-
mation matrix is the matrix which has columns
equal to the eigenvectors. That is, Λt

ir is the ith

component of the rth eigenvector s̃r.

To recapitulate, the inertia tensor is diag-
onalized by an orthogonal transformation I ′′ =
ΛIΛt, where Λt is the matrix whose columns
are the eigenvectors. The diagonals of the trans-
formed inertia tensor are the eigenvalues.

One may solve inertia tensor problems us-
ing various strategies. In one method, calculate
I in a convenient coordinate system, solve the
secular equation (9.16) for the eigenvalues, then
solve (9.17) for the eigenvectors. This yields the
matrix Λt, which facilitates a transformation to
the principal axis system.

Alternatively, the principal axes of the rigid
body may be obvious from symmetry consider-
ations. For example, Eq. (9.11) guarantees that
the normal to a plane of symmetry is a princi-
pal axis. So is an axis of cylindrical symmetry.
Often you can guess the principal axes and cal-
culate the inertia tensor in the principal axis
system directly.

9.8. Parallel axis theorem.

Usually it is desirable to know the inertia
tensor ICM in a system of (body) coordinates
with its origin at the C.M. In this system, there
is no translational motion of the C.M.; the ki-
netic energy arises simply from rotation, and is
equal to T = ω̃tIω̃, as in Eq. (9.12).

On the other hand, it is often far more con-
venient to calculate I in a new (body) system in
which the axes have the same orientation, but
the origin is displaced from the C.M. Denote by
R the vector from the new origin to the C.M.
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Using ri as the coordinate of a mass point in the
new system, and r∗i as the C.M. coordinate of
the same point,

I =
∑
i

mi(r2
i I− r̃ir̃

t
i)

=
∑
i

mi

(
(r∗i+R)2I− (r̃∗i +R̃)(r̃

∗t
i +R̃t)

)
=
∑
i

mi

(
(r∗2

i +R2)I− (r̃∗i r̃
∗t
i + R̃R̃t)

)
= ICM +M(R2I− R̃R̃t) , or

Ijk = ICMjk +M(R2δjk −RjRk) ,
(9.20)

where M is the total mass. The cross terms
in the second equality vanished in the third be-
cause

∑
imir∗i ≡ 0. The last two equations say

that the inertia tensor at R is the inertia tensor
at the center of mass plus the inertia tensor of a
point mass M located at R.

Equation (9.20) is the parallel axis theorem.
With it one may easily calculate ICM given I,
or vice versa.

According to Eq. (9.13), the scalar moment
of inertia I about an axis n̂ is

I = ñtIñ
= ñtICM ñ+ ñtM(R2I− R̃R̃t)ñ

= ICM +M(R2 − ñtR̃R̃tñ)

= ICM +M(R2 − n̂·R R·n̂)
= ICM +M(R2 −R2

n)

= ICM +M(R× n̂)2.

(9.21)

Here we have introduced ICM , the scalar mo-
ment of inertia for rotation about a parallel axis
through the C.M. If n̂ is not a principal axis, re-
call that such scalar moments of inertia are useful
only for calculating the rotational kinetic energy.
If, on the other hand, n̂ is a principal axis, I and
ICM do relate L to �ω, and Eq. (9.21) is equivalent
to the simple form of the parallel axis theorem
that is usually found in introductory courses.

10. Euler’s equations for rotational mo-
tion.

10.1. Evolution of the angular velocity.

Consider the rotation of a free rigid body
(U = 0) about its C.M., using the body’s Euler
angles φ, θ, and ψ as generalized coordinates.
The Lagrangian reduces to

L = T = 1
2 (ω

2
1I11 + ω2

2I22 + ω2
3I33)

if e1, e2, and e3 are chosen to be the princi-
pal axes. Using Eq. (9.6), it would be possible,
though messy, to express T in terms of the Euler
angles and their time derivatives. Alternatively,
to obtain one Euler-Lagrange equation, it is eas-
ier to write

d

dt

∂L
∂ψ̇

=
∂L
∂ψ

d

dt

( ∂L
∂ω3

∂ω3

∂ψ̇

)
=

∂L
∂ω1

∂ω1

∂ψ
+

∂L
∂ω2

∂ω2

∂ψ
.

In the second equality we have used the fact that
only ω3 depends on ψ̇, and only ω1 and ω2 de-
pend on ψ, according to Eq. (9.6). (We chose to
consider the Euler-Lagrange equation in ψ rather
than φ or θ because of these simplifications.)

Plugging in the partial derivatives, including

∂ω3

∂ψ̇
= 1

∂ω1

∂ψ
= ω2

∂ω2

∂ψ
= −ω1

from Eq. (9.6), the Euler-Lagrange equation in
ψ becomes

I33ω̇3 = I11ω1ω2 − I22ω2ω1.

If an external generalized force Qψ in the ψ
direction were present, one would add Qψ to the
right hand side. Since the generalized coordinate
ψ is an angle, and ψ̇ is a rotation about the 3′′′ =
3 axis, Qψ is simply the component N3 of the
external torque on the body. Adding this term,

I33ω̇3 − (I11 − I22)ω1ω2 = N3

I11ω̇1 − (I22 − I33)ω2ω3 = N1

I22ω̇2 − (I33 − I11)ω3ω1 = N2.

(9.22)

Here, recognizing that the e3 direction is not
unique, we have cyclically permuted the indices
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to obtain all three equations. These are the
famous Euler equations prescribing the evolu-
tion of the angular velocity of a rigid body.
Although we derived them by considering the
Euler-Lagrange equation in the Euler angle ψ,
Euler’s equations involve only the Cartesian
components of the angular velocity. These equa-
tions can also be derived using only Newtonian
mechanics.

10.2. Torque-free symmetrical top.

Consider a rotating body that is symmet-
ric (I11 = I22 ≡ I0) and that is free of external
torques (N = 0). The first condition is com-
monly found, as it is satisfied by any object
that is cylindrically symmetric about the e3

axis. However, the latter condition is not of-
ten encountered in everyday experience. For
the torque to vanish, the top must be located
in a “weightless” environment, or be supported
on bearings (“gimbals”) whose axes intersect its
C.M. The earth is one example. As usual, e1,
e2, and e3 are the principal axes. Two cases
are distinguished. If I33 ≡ I3 < I0, as would
be the case for a cigar, the top is called prolate.
Otherwise, like a pancake, the top is oblate.

For either the prolate or oblate top, Euler’s
equations reduce to

I3ω̇3 = 0 ω3 = constant

ω̇1 = −
(
(I3/I0)− 1

)
ω2ω3

ω̇2 =
(
(I3/I0)− 1

)
ω3ω1

e1ω̇1 + e2ω̇2 =
(
(I3/I0)− 1

)
ω3(ω1e2 − ω2e1)

d�ω

dt
= �Ω× �ω

�Ω ≡ e3ω3

(
(I3/I0)− 1

)
.

(9.23)
The next to last line describes precession of
�ω about the e3 axis with angular velocity
Ω = ω3((I3/I0) − 1). The precession vanishes
if all three principal moments of inertia are
equal. Otherwise it is CCW for an oblate top
(I3 > I0), and CW for a prolate top.

While this precession of �ω is fairly straight-
forward to describe in the body system, the
actual motion is complex and quite different

from e.g. the familiar precession caused by grav-
ity acting on a top with one point fixed. As
viewed in the body system, what is precessing is
not the top, but rather the axis about which it
is instantaneously rotating. The angular veloc-
ity Ω of precession is small compared to ω itself
if I3 and I0 are nearly equal.

As an example, imagine that the earth is a
perfectly rigid body with a slight bulge at the
equator, making it oblate. Here the “equator”
is defined not by the earth’s instantaneous axis
of rotation, but rather by a line painted around
the earth’s circumference at its maximum bulge.
Suppose further that, as the result of some cos-
mic accident, the earth is rotating about an axis
at 40◦ north latitude relative to the equator,
e.g. near Denver. Then, as seen by an observer
on the earth, this axis of rotation slowly moves
east at the same latitude, through Philadelphia,
Madrid, etc.

As seen by an observer in the space (inertial)
system, the earth’s motion is more complicated.
This is because the change of ω̂ is slow relative
only to the body axes. As observed in the space
system, the axis of the earth’s rotation changes
more rapidly, because the body axes themselves
are spinning with angular frequency ω.

Some sense can be made of the motion ob-
served in the inertial system by considering the
angular momentum L′, which is conserved in
that system owing to the absence of external
torques. Since �ω is precessing, its magnitude
is constant. The kinetic energy 1

2�ω · L′ (see
Eq. (9.12)) also is conserved. Therefore the
angle between L′ and �ω is fixed.

Temporarily return to the body axes, and
consider the plane formed by �ω and e3. This
plane must contain the angular momentum L
because the body is symmetric (I11 = I22). In
the case of an oblate earth, the angular momen-
tum is closer to e3 than is the angular velocity
because I3 is larger than I0. Therefore L lies
in the plane between e3 and �ω. Both �ω and L
precess CCW about the e3 axis with the same
(small) angular velocity Ω.

Return finally to the space axes. Now L′ is
fixed. The other two vectors e3 and �ω still lie
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in a plane containing L′, one on either side of
L′. Each traces a cone around L′, moving with
(large) angular velocity ≈ ω. Thus, in the space
axes, the earth is observed to wobble: it rotates
rapidly about an axis which itself is precessing
rapidly about L′. This is in addition to the slow
precession of �ω with respect to e3.

10.3. Stability of force-free rotation.

In the symmetric case just considered, any
wobbling arises from an initial misalignment of
�ω and e3. When these two vectors are aligned
initially, no precession of �ω occurs.

Here, for an asymmetric torque-free rigid
body with unequal principal moments of inertia,
I1 �= I2 �= I3, we investigate the stability of rota-
tion along a direction close to that of a principal
axis, say e3. In other words, ω3 � ω1 or ω2.
Euler’s equations yield

I3ω̇3 = (I1 − I2)ω1ω2

I2ω̇2 = (I3 − I1)ω3ω1

I1ω̇1 = (I2 − I3)ω2ω3

I1ω̈1 = (I2 − I3)(ω̇2ω3 + ω̇3ω2)

= (I2 − I3)
(
I−1
2 (I3 − I1)ω2

3ω1 −
− I−1

3 (I2 − I1)ω2
2ω1

)
≈ (I2 − I3)I−1

2 (I3 − I1)ω2
3ω1

0 = ω̈1 +
(I3 − I2)(I3 − I1)

I1I2
ω2

3ω1.

(9.24)

The first equality guarantees that ω3 is nearly
constant, since ω1ω2 is assumed to be small.
Then the last equality is nearly a harmonic
oscillator equation for ω1, provided that the co-
efficient of ω1 in the last term is positive. This
occurs if I3 is either the largest or the small-
est principal moment. But if I3 is intermediate
between I1 and I2, the coefficient is negative.
Then the solution to Eq. (9.24) is an exponen-
tially growing ω1, and the rotation is unstable.

11. Heavy symmetric top with one point
fixed.

11.1. Constants of the motion.

We pass now from the torque-free top to
analysis of a “heavy” top which is influenced
both by the force of gravity mg and by forces
exerted upon it to keep its pivot point fixed. The
top possesses the same symmetry I11 = I22 as
considered previously. Instead of the C.M., here
we choose the top’s pivot point as the origin,
so that its kinetic energy can be considered to
be purely rotational. Since the pivot point, like
the C.M., lies on the e3 axis, the parallel axis
theorem guarantees that the principal moments
I1 = I2 ≡ I about that point are also equal.

The Euler angles φ, θ, and ψ are ideal for
describing the orientation of the top. As usual,
e′1, e

′
2, and e′3 ≡ −ĝ are the fixed axes, with

their origin at the pivot point; e1, e2, and e3 are
the body axes, with the same origin. According
to Euler’s convention, the transformation from
the space to the body axes consists first of a ro-
tation about e′3 by φ; next a rotation about the
line of nodes (the temporary e1 direction) by θ;
and finally a rotation about the e3 direction by
ψ. Therefore φ is the azimuth of the top’s axis,
as viewed in the space system; θ is the polar
angle of that axis measured from e′3; and ψ is
the azimuth of the top about the same axis. In
other words, spinning of the top about its own
axis is represented by ψ̇; precession of the top’s
axis about e′3 is represented by φ̇; and nutation,
the (bobbing) variation of the polar angle of the
top’s axis, is represented by θ̇.

To write the Lagrangian we must express
the top’s kinetic energy in terms of the Euler
angles. Using Eq. (9.6), we evaluate

ω2
1 + ω2

2 = (φ̇ sin θ sinψ + θ̇ cosψ)2 +

+ (φ̇ sin θ cosψ − θ̇ sinψ)2

= φ̇2 sin2 θ + θ̇2

ω2
3 = (φ̇ cos θ + ψ̇)2.

Using these relations, the Lagrangian is

L = 1
2 (I11ω

2
1 + I22ω

2
2 + I33ω

2
3)− U

= 1
2I(φ̇

2 sin2 θ + θ̇2)+

+ 1
2I3(φ̇ cos θ + ψ̇)2 −mgh cos θ,

(11.1)
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where h is the distance along the e3 axis from
the pivot point to the C.M.

The Lagrangian is independent of the two
cyclic coordinates φ and ψ. The corresponding
conjugate momenta are constants of the motion:

pφ ≡ ∂L
∂φ̇

= constant

= Iφ̇ sin2 θ + I3(φ̇ cos θ + ψ̇) cos θ

pψ ≡ ∂L
∂ψ̇

= constant

= I3(φ̇ cos θ + ψ̇).

(11.2)

Equation (11.2) can be rearranged to express φ̇
in terms of pφ and pψ:

pφ = Iφ̇ sin2 θ + pψ cos θ

φ̇ =
pφ − pψ cos θ

I sin2 θ
.

(11.3)

The final constant of the motion is obtained
by noting that the Lagrangian has no explicit
time dependence, so that the Hamiltonian H =
constant ≡ E. Since T is a generalized quadratic
function of φ̇, θ̇, and ψ̇, H = T + U . Then

H = 1
2I(φ̇

2 sin2 θ + θ̇2)+

+ 1
2I3(φ̇ cos θ + ψ̇)2 +mgh cos θ

E = 1
2Iφ̇

2 sin2 θ + 1
2Iθ̇

2 +
p2
ψ

2I3
+mgh cos θ

=
(pφ − pψ cos θ)2

2I sin2 θ
+
Iθ̇2

2
+

p2
ψ

2I3
+mgh cos θ.

(11.4)
In the last two lines we used Eqs. (11.2) and
(11.3) to eliminate φ̇ and ψ̇. Eq. (11.4) is the
starting point for further analysis.

11.2. Equation of motion in a single coordinate.

Introducing the renormalized energy E′ and
effective potential U ′,

E′ ≡ E − p2
ψ/2I3 = constant

U ′ ≡ (pφ − pψ cos θ)2

2I sin2 θ
+mgh cos θ,

(11.5)

Eq. (11.4) takes the simple form

E′ = 1
2Iθ̇

2 + U ′(θ). (11.6)

This is a differential equation for the single co-
ordinate θ(t).

Before attempting to solve Eq. (11.6), we
recognize that U ′ is infinite both at θ = 0 and
at θ = π, unless the special condition |pφ| = |pψ|
is satisfied. Therefore U ′ must reach a minimum
at an intermediate polar angle θU . When θ = θU
and θ̇ = 0, E′ is minimized. There the top moves
with the same uniform precession studied in in-
troductory courses. In relation to the effective
potential, this minimum energy solution is remi-
niscent of the circular orbit in the two-body cen-
tral force problem. As the energy increases (for
fixed pφ and pψ), the top nutates around θU be-
tween θmin and θmax. This reminds us of the el-
liptical orbit in the central force problem, except
that the frequency of nutation in general is not
an integral multiple of the precession frequency.

In the same way as for two-body central
force motion, Eq. (11.6) may be rearranged to
yield an integral solution to the motion:

1
2I
(dθ
dt

)2 = E′ − U ′(θ)

t =
∫
dθ

√
I

2
(
E′ − U ′(θ)

) . (11.7)

Equation (11.6) is simplified by substituting
u ≡ cos θ:

u̇ = −θ̇ sin θ = −θ̇
√
1− u2

E′ = I
u̇2

2(1− u2)
+

(pφ − pψu)2

2I(1− u2)
+mghu

I2u̇2 = 2I(1−u2)(E′−mghu)− (pφ−pψu)2.
(11.8)

Unfortunately, this equation is cubic in u.

Further simplification is achieved by releas-
ing the top’s axis from rest: θ̇(0) = φ̇(0) = 0,
with u(0) ≡ u0 ≡ cos θ0. Referring to Eq. (11.3),
we see that pφ − pψ cos θ0 also vanishes. Then,
in Eq. (11.5), so does the first term in U ′ when
t = 0. Since θ̇ also vanishes at that time,
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Eq. (11.6) reduces to E′ = mghu0. Equation
(11.8) becomes

I2u̇2 = 2I(1−u2)mgh(u0−u)− (pφ−pψu)2

= 2I(1−u2)mgh(u0−u)− p2
ψ(u0−u)2

= p2
ψ

(
α(1−u2)(u0−u)− (u0−u)2

)
α ≡ mgh

p2
ψ/2I

.

(11.9)
In the last line we have introduced the dimen-
sionless constant α, which is a factor of order
unity (I/2I3) multiplied by the ratio of the range
in potential energy (2mgh) to the initial kinetic
energy (p2

ψ/2I3).

Although its constants are in neater form,
Eq. (11.9) is still a cubic in u. One new piece
of information falls out easily. Obviously u̇ = 0
when u = u0, as the initial conditions demand.
In addition, u̇ = 0 when u0 − u = α(1− u2). De-
note this second turning point by u = u0 −∆u.
The condition for u̇ = 0 becomes

∆u = α
(
1− (u0 −∆u)2

)
∆u = α(1− u2

0 + 2u0∆u−∆u2).
(11.10)

The range ∆u within which the top nutates can
be obtained by solving this quadratic equation.

11.3. Nutation of a fast top.

Another advantage of Eq. (11.9), relative to
earlier versions, is that the right hand side con-
tains two distinct terms. Depending on the value
of α, it may be possible to neglect one with re-
spect to the other. For example, a fast top has
an initial kinetic energy which greatly exceeds
its range in potential energy: α 
 1. Then
Eq. (11.10) requires ∆u to be small, simplifying
to

∆u ≈ α(1− u2
0) = α sin2 θ0. (11.11)

To solve Eq. (11.9) for the special case of
the fast top, we apply the method of perturba-
tions. Since u is known to vary between u0 and
u0 −∆u = u0 − α sin2 θ0, we expand u about its
central value u0 − 1

2∆u:

u = u0 − 1
2∆u+ δ

= u0 − α
2 sin2 θ0 + δ.

(11.12)

Here the perturbation δ is of the same small
order as α.

Now we insert Eq. (11.12) into Eq. (11.9)
and retain terms to second order in α and δ:

I2

p2
ψ

u̇2 = α(1− u2)(u0 − u)− (u0 − u)2

= (u0 − u)
(
α(1− u2)− (u0 − u)

)
= (α2 sin2 θ0 − δ)

(
α(1−u2)− (α2 sin2 θ0 − δ)

)
≈ (α2 sin2 θ0 − δ)

(
α sin2 θ0 − (α2 sin2 θ0 − δ)

)
= (α2 sin2 θ0 − δ)(α2 sin2 θ0 + δ)

I2

p2
ψ

δ̇2 =
α2

4
sin4 θ0 − δ2.

(11.13)

Equation (11.13) is merely quadratic in δ
and may be solved by taking the time derivative:

2δ̇δ̈ = −
p2
ψ

I2
2δδ̇

δ̈ = −
p2
ψ

I2
δ

Ωnutation =
pψ
I
.

(11.14)

For comparison, the average angular veloc-
ity of precession is:

〈φ̇〉 =
〈pφ − pψ cos θ

I sin2 θ

〉
=
〈pψ(u0 − u)

I sin2 θ

〉
≈
〈 pψ∆u
2I sin2 θ

〉
≈ pψα sin2 θ0

2I sin2 θ0

=
α

2
pψ
I
.

(11.15)

Therefore, independently of θ0, the fast top nu-
tates Ωnutation/〈φ̇〉 = 2/α times for each period
of precession.

11.4. Stability of a sleeping top.

Retaining the same initial conditions, we
consider finally the special case of an initially
upright (“sleeping”) top, i.e. θ0 = 0. Because
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of this additional simplification, it will no longer
be necessary to assume that the top is fast, i.e.
that α 
 1. Beginning with the first equality in
Eq. (11.13), set u0 = 1 and define ε ≡ 1− u:

I2

p2
ψ

u̇2 = α(1−u2)(u0−u)− (u0−u)2

= α(1− u2)(1− u)− (1− u)2

= (1− u)2
(
α(1 + u)− 1

)
I2

p2
ψ

ε̇2 = ε2
(
α(2− ε)− 1

)
.

(11.16)

Differentiating both sides with respect to time,

I2

p2
ψ

ε̇ε̈ = εε̇
(
α(2− ε)− 1

)
− ε2αε̇

I2

p2
ψ

ε̈ = ε
(
α(2− ε)− 1

)
− ε2α

= ε
(
2α(1− ε)− 1

)
≈ −(1− 2α)ε.

(11.17)

When α < 1
2 , perturbations about cos θ = 1

oscillate stably with angular frequency

Ωnutation =
pψ
I

√
1− 2α. (11.18)

When α 
 1, this reduces to Eq. (11.14). When
α > 1

2 , the sleeping top is unstable. This is a fa-
miliar observation. As friction slows ψ̇ and raises
α, an initially upright top suddenly nutates vio-
lently.

12. Coupled oscillatory motion.

12.1. Lagrangian for small oscillations about
equilibrium.

Our approach to the coupled oscillator prob-
lem will be to develop the most general method,
usable for any number n of generalized coordi-
nates qk, 1 ≤ k ≤ n. Here k runs over both the
number of dimensions and the number of parti-
cles in the problem; for example, a problem with
two particles in three dimensions has n = 6.

For a velocity-independent potential U(qk),
about a local minimum Umin where all the q’s are
defined to vanish, we may expand to second order

U − Umin =
∑
k

qk
∂U

∂qk

∣∣∣
Umin

+

+ 1
2

∑
kl

qkql
∂2U

∂qk∂ql

∣∣∣
Umin

≡ 0 + 1
2

∑
kl

qkqlKkl

≡ 1
2qkKklql

≡ 1
2 q̃

tKq̃

Kkl ≡
∂2U

∂qk∂ql

∣∣∣
Umin

.

(12.1)

In the second equality we used the fact that all
derivatives with respect to the qk vanish at the
local minimum. Notice the summation over k
and l implied by the repeated indices in the third
equality, and the matrix notation in the fourth.

The elements Kkl of the spring constant ma-
trix K are constants. Likewise, we assume that
the potential energy T for this system can be
written in terms of the constant mass matrixM:

T ≡ 1
2

∑
kl

q̇kq̇lMkl

≡ 1
2 q̇kMklq̇l.

(12.2)

This is a much stronger assumption than was
made in order to obtain Eq. (12.1). For exam-
ple, the coordinates must be Cartesian; other-
wise the elements Mkl of the mass matrix would
be functions of the qk. Then the Lagrangian is

L({qi}, {q̇i}) = 1
2 q̇kMklq̇l − 1

2qkKklql. (12.3)

The oscillator is coupled if any of the off-diagonal
elements of K orM are nonzero. Otherwise, the
Lagrangian merely describes n uncoupled oscil-
lators, each affected by none of the others.

Since the matrix elements in the Lagrangian
are constant, the Euler-Lagrange equations in
each of the n coordinates qk yield n different
equations of the form

Kklql +Mklq̈l = 0, (12.4)
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each with 2n terms. In obtaining Eq. (12.4), one
makes use of the fact that K is symmetric by
definition, and that we forceM to be symmetric
by associating equal amounts of kinetic energy
with Mkl and Mlk.

12.2. Harmonic solution to Euler-Lagrange
equation.

In analogy with simple harmonic motion of
the undamped oscillator, we speculate that there
exist solutions to Eq. (12.4) for which each coor-
dinate qk executes harmonic motion at the same
frequency and with the same phase, give or take
π, as every other coordinate. We do allow the
amplitude of oscillation ak to vary with k. Such
solutions exist; they are called normal modes of
oscillation. By analogy with the complex expo-
nential method, taking ak to be a real constant,
substitute

qk(t) = �
(
ake

i(ωt+δ)
)

(12.5)

in Eq. (12.4):

�
(
(Kkl − ω2Mkl)alei(ωt+δ)

)
= 0. (12.6)

As usual, we choose to solve the complex equa-
tion of which Eq. (12.6) is the real part. Factor-
ing out the common phase,

(Kkl − ω2Mkl)al = 0

(K − ω2M)ã = 0,
(12.7)

where ã is a column vector with elements equal
to the al’s. Since everything else in the lin-
ear Eq. (12.7) is real, the al’s may be defined
to be real as well. This supports our original
speculation.

12.3. Normal mode eigenvalue problem.

Equation (12.7) is similar to the eigenvalue
problem encountered when we diagonalized the
inertia tensor. In fact, since both K and M are
real symmetric matrices, it is the same problem,
except that K − ω2M replaces I − eI. By the
same arguments used in section (9.6), there ex-
ist n normal frequencies2 ω2

r , 1 ≤ r ≤ n. These
correspond to the real positive eigenvalues of the

inertia tensor. Like those eigenvalues, some of
the normal frequencies may be the same (these
are called “degenerate”). Corresponding to the
eigenvectors of the inertia tensor, there exist n
real normal mode vectors ãr.

The normal mode vectors are orthogonal,
but only in a special way:

(ãr)tãs �= 0 when r �= s, but
(ãr)tMãs = 0 when r �= s.

(12.8)

This special type of orthogonality is readily un-
derstood in the context of the proof in section
(9.6). That proof used the fact that the eigen-
value e multiplies the unit matrix I in the eigen-
value equation (9.16). However, in the coupled
oscillator problem, the normal frequency2 ω2

multiplies M rather than I.

Equation (12.8) still leaves us free to choose
the lengths of the normal mode vectors. Our
choice produces the most elegant condition:

(ãr)tMãs = δrs. (12.9)

The normal mode vectors are said to be or-
thonormal in a space having the metric M,
rather than in a space having the usual unit
metric I.

Although the analogy with the inertia ten-
sor eigenvalue problem is complete, we record
here the steps required to obtain the normal fre-
quencies and the normal mode vectors. First we
identify the spring constant and mass matrices
for the particular problem at hand. Then, for a
solution to Eq. (12.7) to exist, we demand that
the secular equation be satisfied:

det (K − ω2M) = 0. (12.10)

This is an nth order polynomial equation for
ω2. Its n roots are the normal frequencies2 ω2

r .
Next, for each of these n frequencies, we solve n
simultaneous equations of the form

(K − ω2
rM)ãr = 0 (12.11)

to obtain each of the normal mode vectors ãr.
Finally, we adjust the lengths of each of the ãr’s
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in order to satisfy the orthonormality require-
ment (12.9).

12.4. Transformation to normal coordinates.

In our study of the inertia tensor I, we
benefited by considering the square matrix Λt

whose columns are its eigenvectors. The un-
transposed version Λ of that matrix was found
to represent the orthogonal transformation that
diagonalizes I by means of the similarity trans-
formation ΛIΛt.

Correspondingly, we now form the matrix
A whose columns are the normal mode vectors.
This means that the (kr)th element of A is the
kth component of the rth normal mode vector:

Akr ≡ ark. (12.12)

The benefits of considering A are even more
striking. The orthonormality condition (12.9)
becomes still more elegant:

δrs = (ãr)tMãs

= arkMkla
s
l

= AkrMklAls

= At
rkMklAls

= (AtMA)rs
I = AtMA.

(12.13)

Equation (12.13) states that, by means of the
congruence transformation AtMA, the matrix
A of normal mode vectors not only diagonalizes
the mass matrix M; it reduces M to the unit
matrix I.

A similar proof using the spring constant
matrix yields

AtKA ≡ Ω2

=



ω2

1 0 · · · 0
0 ω2

2 · · · 0
...

...
. . .

...
0 0 · · · ω2

n


 .

(12.14)

Again, by means of the congruence transforma-
tion AtKA, the matrix A of normal mode vectors
diagonalizes the spring constant matrix K. The

resulting matrix Ω2 is the diagonal matrix of
normal frequencies2 ω2

r .

How is it possible that the same transfor-
mation A is able to diagonalize two different real
symmetric matrices M and K? Imagine first
performing a simple rotation to diagonalize M.
Then transform to a renormalized set of gener-
alized coordinates so that M is proportional to
the unit matrix. Finally, perform a second ro-
tation to diagonalize K. This second rotation
preserves the diagonal form of M because it is
already the unit matrix.

So far we have been discussing the effect
of A upon the mass and spring constant matri-
ces. Now consider using A to transform from a
new set of n generalized coordinates {Qr} to the
original set of n generalized coordinates {qk}:

qk(t) ≡
∑
r

AkrQr(t)

q̃ ≡ AQ̃
Q̃ = A−1q̃

= AtMq̃.

(12.15)

In the last line we set A−1 = AtM using
Eq. (12.13). The {Qr} are called normal co-
ordinates.

In the original basis {qk}, neither M nor K
were diagonal. But in the new basis {Qr},

T = 1
2
˙̃q
tM ˙̃q

= 1
2 (A

˙̃Q)tMA ˙̃Q

= 1
2
˙̃Q
t

AtMA ˙̃Q

= 1
2
˙̃Q
t

I ˙̃Q

= 1
2
˙̃Q
t ˙̃Q.

(12.16)

Similarly,
U = 1

2 Q̃
tΩ2Q̃. (12.17)

In the new basis {Qr}, called the normal ba-
sis, both the mass and spring constant matrices
are diagonal. Application of the Euler-Lagrange
equations yields one simple harmonic equation
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for each normal coordinate. In the new basis,
Eq. (12.4) is simply

ω2
rQr + Q̈r = 0. (12.18)

The oscillation of each normal coordinate is to-
tally decoupled from that of any other normal
coordinate. The normal modes of oscillation are
connected only through the initial conditions.
Thereafter, oblivious to the others, each nor-
mal mode forever rattles away at its own normal
frequency.

When a system of oscillators is excited in
only one normal mode, what are the motions
of the original generalized coordinates qk? The
simple answer is provided by Eq. (12.15). For
example, if only mode seven is excited, only Q7

is nonzero:

qk(t) = Ak7Q7(t) = a7
kQ7(t). (12.19)

The relative amplitude of the motion of each of
the n generalized coordinates is given simply by
the relative size of the n components a7

k of the
seventh normal mode vector. All coordinates qk
execute simple harmonic motion with the same
angular frequency ω7 and the same phase.

Of course, the general solution involves the
excitation of all n normal modes. Then each
original generalized coordinate executes the sum
of n simple harmonic oscillations with n (gen-
erally) different angular frequencies and phases.
For any coordinate, the amplitude of a partic-
ular oscillation frequency is given by the rela-
tive amplitude of motion of that coordinate for
the particular normal mode which has that fre-
quency, multiplied by the amplitude with which
that particular normal mode is excited, as deter-
mined by the initial conditions.

12.5. Obtaining normal mode amplitudes from
initial conditions.

Let’s express the previous paragraph in
equations rather than words. The initial con-
ditions require each normal coordinate Qr(t) to
have a unique amplitude and phase:

Qr(t) = �(Preiωrt), (12.20)

where Pr is a complex constant. From Eq. 12.15,
the original generalized coordinates qk become

qk(t) = �
(∑

r

AkrPre
iωrt
)
. (12.21)

The two constants Akr and Pr are different in
form and in function. Akr is real, with a mag-
nitude fixed by the orthonormality condition
(12.9). For oscillation in the rth normal mode,
it determines the relative amplitude of the kth

generalized coordinate qk. Pr is complex, with a
magnitude and phase adjusted to fit the initial
conditions. It is the amplitude with which the
rth normal mode is excited.

As for the initial conditions, suppose that

qk(0) ≡ q0k ; q̇k(0) ≡ q̇0k, (12.22)

where q0k and q̇0k are real constants. (Note that
q̇0k �= dq0k/dt !) Suppose also that the complex
normal mode amplitude Pr is expressed in terms
of its real and imaginary parts:

Pr ≡ Rr +
Sr
iωr

, (12.23)

where Rr and Sr are real constants. Then from
Eqs. (12.21) and (12.22),

q0k =
∑
r

AkrRr

q̇0k =
∑
r

AkrSr.
(12.24)

Transforming to matrix notation,

q̃0 = AR̃; R̃ = A−1q̃0

˜̇q0 = AS̃; S̃ = A−1˜̇q0.
(12.25)

Using A−1 = AtM, we have finally

R̃ = AtMq̃0

S̃ = AtM˜̇q0.
(12.26)

With R̃ and S̃ specified, so is P̃ from Eq. (12.23),
yielding the qk(t) from Eq. (12.21).

12.6. Energy in normal modes.
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Using Eqs. (12.16), (12.17), (12.20), and
(12.23), the conserved total energy is

E = T + U

= 1
2
˙̃Q
t

(t) ˙̃Q(t) + 1
2 Q̃

t(t)Ω2Q̃(t)

= 1
2
˙̃Q
t

(0) ˙̃Q(0) + 1
2 Q̃

t(0)Ω2Q̃(0)

= 1
2 S̃

tS̃ + 1
2 R̃

tΩ2R̃

= 1
2

∑
r

(S2
r + ω2

rR
2
r)

= 1
2

∑
r

ω2
rP

∗
r Pr

= 1
2 P̃

†Ω2P̃ .

(12.27)

Although energy within a particular normal
mode is shifted back and forth between kinetic
and potential forms, as occurs in any harmonic
oscillator, the sum of potential and kinetic en-
ergies in that mode is constant. According to
Eq. (12.27), the total energy E is just the sum of
energies in the individual modes, which in turn
depend only upon the normal frequencies ωr and
the moduli |Pr| of the mode amplitudes.

12.7. Driven coupled oscillator.

So far we have been discussing the general
solution to the homogeneous equation, corre-
sponding to free vibrations. If a driving term
is present, we need a particular solution of the
inhomogenous equation to add to the homoge-
neous solution. Suppose that each of the original
generalized coordinates qk is subjected to a gen-
eralized force

fk ≡ �(gkeiωt), (12.28)

where gk is a complex constant. Note that the
driving frequency ω is assumed to be the same
for all coordinates.

We shall express the generalized force Fr
acting on the normal coordinate Qr as

Fr ≡ �(Gre
iωt). (12.29)

Then, recalling from Eq. (12.15) that qk =
AkrQr, we require that the work done by the

force when calculated in either coordinate sys-
tem be the same:∑

r

Fr dQr =
∑
k

fk dqk

=
∑
k

fk
∑
r

Akr dQr

=
∑
r

(∑
k

Akrfk
)
dQr

Fr =
∑
k

Akrfk

F̃ = Atf̃

G̃ = Atg̃.

(12.30)

With the addition of the generalized force,
the Euler-Lagrange equation satisfied by the nor-
mal coordinate Qr becomes

Q̈r = −ω2
rQr + �(Gre

iωt). (12.31)

Seeking a solution of the form

Qr(t) ≡ �(P ′
re

iωt), (12.32)

where P ′
r is a complex constant, we easily find

P ′
r =

Gr

ω2
r − ω2

. (12.33)

Introducing

T 2 ≡




1
ω2

1−ω2 0 · · · 0

0 1
ω2

2−ω2 · · · 0
...

...
. . .

...
0 0 · · · 1

ω2
n−ω2


 ,

(12.34)
the particular solution is

P̃ ′ = T 2G̃

= T 2Atg̃

AP̃ ′ = AT 2Atg̃

�(AP̃ ′eiωt) = �(AT 2Atg̃eiωt)

AQ̃(t) = AT 2At�(g̃eiωt)
q̃(t) = AT 2Atf̃(t),

(12.35)
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where it is understood that the components of
f̃(t) are sinusoidal in ω. Equation (12.35) ex-
presses a simple result: the steady-state response
q̃(t) of the original generalized coordinates to a
generalized sinusoidal driving force f̃(t) is given
by the operator AT 2At, which is just T 2 after a
similarity transformation by A.

13. Lagrangian density for continuous sys-
tems.

13.1. Calculus of variations for two independent
variables.

In section (4.1) we considered the problem
of finding the path y(t) such that the action

J =
∫ t2

t1

dtL(y, ∂y∂t , t)

is extremized, where the limits of integration are
fixed, and where L (later called the Lagrangian)
is a function of the indicated variables. The
solution was given by the Euler equation (4.3):

d

dt

∂L
∂(∂y∂t )

=
∂L
∂y

. (13.1)

Here we have chosen to write the first deriva-
tive of y with respect to t as ∂y

∂t rather than as
ẏ. (Since y is a function only of the independent
variable t, the partial and total time derivatives
of y are equivalent.)

Now we consider a slightly more general
problem. The new action to be extremized is a
two-dimensional integral of a new function L′,
later to be called the Lagrangian density. The
path y which extremizes the action is a function
of two independent variables s and t. The inte-
gral is taken over these same two variables. The
Lagrangian density L′(y, ∂y∂s ,

∂y
∂t , s, t) is a func-

tion of y and its partial derivatives with respect
both to s and t. It may also be a function of s
and/or t explicitly. The action is

J =
∫ s2

s1

ds

∫ t2

t1

dtL′(y, ∂y∂s ,
∂y
∂t , s, t),

where the limits of both integrals are fixed.

It is not surprising that a derivation of the
same type as that in section (4.1) gives a slightly
more general Euler equation:

d

ds

∂L′

∂(∂y∂s )
+

d

dt

∂L′

∂(∂y∂t )
=

∂L′

∂y
. (13.2)

This is the same as Eq. (13.1) except for the
added first term, which is equivalent to the sec-
ond term with t replaced by s. The meaning
of d

ds and d
dt requires clarification. For exam-

ple, d
dt is total because it includes the variation

of L′ with respect to t both explicitly and im-
plicitly through the dependence upon t of y and
its derivatives. However, d

dt is also partial be-
cause the other independent variable s must be
held fixed throughout the differentiation. To be
excessively precise,

d

dt
≡
( ∂
∂t

)
y, ∂y

∂s ,
∂y
∂t ,s

+

+
(∂y
∂t

)
s

( ∂

∂y

)
∂y
∂s ,

∂y
∂t ,s,t

+

+
(∂ ∂y

∂s

∂t

)
s

( ∂

∂ ∂y
∂s

)
y, ∂y

∂t ,s,t
+

+
(∂ ∂y

∂t

∂t

)
s

( ∂

∂ ∂y
∂t

)
y, ∂y

∂s ,s,t
,

(13.3)

where the subscripts are the variables to be held
fixed during the differentiation. Note that terms
similar to those in the first, second, and last
lines of this expression would be present even if
we had only one independent variable (t).

The generalization of Eq. (13.2) to n new
independent variables si, 1 ≤ i ≤ n, is obvious:

d

dsi

∂L′

∂( ∂y∂si
)
+

d

dt

∂L′

∂(∂y∂t )
=

∂L′

∂y
, (13.4)

where, as usual, summation over the repeated
index i is implied.

13.2. Hamilton’s Principle for continuous sys-
tems.
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The foregoing section was concerned merely
with a mathematical problem in variational cal-
culus. As in section (5.1), the connection with
physics is recovered by identifying the indepen-
dent variable t with the time. Of what use is the
other independent variable s?

One answer is that s may play the role of a
field variable in one spatial dimension. For ex-
ample, to describe the state of a string which
may be displaced in one transverse direction, we
must specify the displacement y as a function
both of time t and of the position s along the
string. The fixed limits of integration t1 and t2
correspond to the fixed time interval over which
the action is to be minimized. Correspond-
ingly, the fixed limits of integration s1 and s2

correspond to the fixed endpoints of the string.

In order to preserve the action’s units, we
assign to the integrand L′ the units of the La-
grangian L = T − U divided by those of s. In
our example of a string, L′ is the Lagrangian
per unit length along the string – that is, T − U
per unit length. More generally, L′ is called the
Lagrangian density.

Hamilton’s Principle for continuous systems
asserts that the system will evolve along the
path y(s, t) which minimizes the action – the in-
tegral with respect to s and t of the Lagrangian
density L′. This means that y satisfies the
Euler-Lagrange equation (13.2). Again, the jus-
tification of Hamilton’s Principle relies on the
fact that it reproduces the solutions to prob-
lems amenable to Newtonian analysis, while it
yields solutions to more complex problems that
are confirmed by experiment.

13.3. Transverse wave equation for a string.

Consider an infinitesimal piece ∆s of string
in a gravity-free region. We assume that any mo-
tion is possible only in the single transverse direc-
tion y. The kinetic energy of the piece of string is

∆T = 1
2µ
(∂y
∂t

)2∆s,

where µ is the string mass per unit length.

The potential energy requires a bit more
discussion. If the string’s slope is ∂y

∂s , according

to Pythagoras’ theorem the length of the piece of
string is increased with respect to its equilibrium
length by

∆l =
√
(∆s)2 + (∆y)2 −∆s

=
(√

1 +
(∂y
∂s

)2 − 1
)
∆s

≈ 1
2

(∂y
∂s

)2∆s,

where the approximation is valid for small slopes.
If the string is stretched with tension τ , the in-
cremental potential energy associated with this
extra length is ∆U = τ ∆l.

The Lagrangian density corresponding to
∆T and ∆U is

L′ =
∆T
∆s

− ∆U
∆s

= 1
2µ
(∂y
∂t

)2 − 1
2τ
(∂y
∂s

)2
.

(13.5)

Applying the Euler-Lagrange Eq. (13.2) to
L′,

− d

ds

(
τ
∂y

∂s

)
+

d

dt

(
µ
∂y

∂t

)
= 0

−τ ∂
2y

∂s2
+ µ

∂2y

∂t2
= 0

∂2y

∂s2
− 1
c2

∂2y

∂t2
= 0

c ≡
√
τ

µ
.

(13.6)

In the last line we defined the phase velocity
c. Equation (13.6), the wave equation, is the
starting point for our discussion of waves in one
dimension.
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14. Waves.

14.1. General solution to the wave equation.

The general solution to the wave equation
(13.6),

∂2y

∂x2
− 1
c2

∂2y

∂t2
= 0, (14.1)

is

y(x, t) = y+(x− ct) + y−(x+ ct), (14.2)

where y+ and y− are any twice differentiable
functions of their arguments. The first (second)
term is an arbitrary smooth shape travelling in
the positive (negative) x direction with velocity
c. Following the usual convention, in Eq. (14.1)
we substituted x for s. Nevertheless, it cannot
be emphasized too strongly that x and y play
completely different roles in the Euler-Lagrange
equation (13.2). The former is an independent
variable like the time; the latter is a variable
that depends on x and t.

The fact that Eq. (14.2) solves the wave
equation is easily verified by substitution. The
fact that it is a general solution is illustrated by
obtaining the {y+, y−} which satisfy the (fairly)
general set of initial conditions

y(x, 0) ≡ y0(x); ẏ(x, 0) ≡ v0(x). (14.3)

Note that the initial conditions for a continu-
ous system are specified as functions rather than
numbers. Substituting the solution (14.2) at
t = 0,

y0(x) = y+(x) + y−(x)
v0(x) = −cy′+(x) + cy′−(x),

(14.4)

where the ′ indicates differentiation of y+ and
y− with respect to their (different) arguments.
Differentiating the first line in Eq. (14.4) with
respect to x, dividing the second line by −c, and
adding,

2y′+(x) = y′0(x)− 1
cv0(x)

y+(x) = 1
2y0(x)− 1

2c

∫ x

0

du v0(u) + C+.

Similarly,

y−(x) = 1
2y0(x) + 1

2c

∫ x

0

du v0(u) + C−,

where C+ + C− = 0. The full solution is then

y(x, t) =
y0(x− ct) + y0(x+ ct)

2
+

+
1
2c

∫ x+ct

x−ct

du v0(u).
(14.5)

14.2. Travelling sinusoidal waves.

A special case of the general solution (14.2)
occurs when y+ and y− are harmonic functions.
Allowing the amplitude, angular frequency, and
phase of either wave to be arbitrary,

y+(x− ct) ≡ �
(
Ã+e

ik+(ct−x)
)

y−(x+ ct) ≡ �
(
Ã−e

ik−(ct+x)
)
.

(14.6)

The constants Ã± are the complex wave ampli-
tudes. The real constants k± have been intro-
duced to make the exponents dimensionless.

Obviously the time dependence of Eq. (14.6)
is of the form exp(iω±t) with

ω± = ck±. (14.7)

The spatial dependence is of the similar form
exp(∓ik±x). In a single (x) dimension, the
k± are wave numbers 2π/λ±, where λ± are
the wavelengths. In three dimensions, k±x is
replaced by k±·x; the k± are called wave vectors.
The relation (14.7) between ω and k is called a
dispersion relation (because the waves disperse
if the relationship between ω and k is nonlinear).

As usual, it is customary and convenient
to work directly with the complex displacement
Ã±exp

(
ik±(ct ∓ x)

)
, rather than with its real

part y±.

The phenomenon of beats between sinu-
soidal waves is most simply demonstrated by
the case of two waves of equal amplitude and
phase but different wave number, travelling in
the same (+x) direction:

y(x, t)=�
(
Ãei(ω1t−k1x)+Ãei(ω2t−k2x)

)
. (14.8)
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Assuming ∆k 
 k0, define

k0 ≡ 1
2 (k1 + k2)

∆k ≡ k2 − k1

ω1 ≡ ω(k1) ≈ ω0 −
∆k
2

dω

dk

∣∣∣
k0

ω2 ≡ ω(k2) ≈ ω0 +
∆k
2

dω

dk

∣∣∣
k0

.

(14.9)

Here we have allowed for the possibility that dω
dk

is not always equal to a constant value c, as it is
for a simple string. This occurs particularly on
stiff strings (as on the upper octaves of a piano).
Finally, define the group velocity

vgr ≡
dω

dk
, (14.10)

here not necessarily equal to the phase velocity

c ≡ ω0

k0
. (14.11)

With these definitions, Eq. (14.8) becomes

y(x, t) = �
{
Ã
(
ei(ω0t−k0x)

(
ei

∆k
2 (vgrt−x) +

+ e−i∆k
2 (vgrt−x)

))}
= �

{
2Ã
(
ei(ω0t−k0x) cos

(
∆k
2 (vgrt− x)

))}
.

(14.12)
In this result, exp

(
i(ω0t − k0x)

)
is the high-

frequency short-wavelength carrier wave mov-
ing with speed c; cos

(
∆k
2 (vgrt− x)

)
is the low-

frequency long-wavelength amplitude modulat-
ing wave moving with speed vgr. Because it
multiplies the carrier, this modulating wave is
an envelope that determines the amplitude of the
short carrier waves inside it. Since the informa-
tion content is provided by these amplitude vari-
ations, the information is borne by the modula-
tion: “the music travels with the group velocity”.

14.3. Standing waves and normal modes.

Starting with a pair of sinusoidal waves as
in Eq. (14.6), next we investigate the implica-
tions of requiring that the string be fixed at its

two endpoints x = 0 and x = L. At the first
endpoint,

0 = y(x=0, t)

= �
(
Ã+e

iω+t + Ã−e
iω−t
)

⇒ Ã+ = −Ã− ≡ Ã

2i
⇒ ω+ = ω− ≡ ω; k+ = k− ≡ k.

With these substitutions, the displacement y is
a standing wave

y(x, t) = �
(
Ãeiωt

)
sin kx.

At the second endpoint x = L,

0 = y(x=L, t)

= �
(
Ãeiωt

)
sin kL

⇒ 0 = sin kL

⇒ kn =
nπ

L
, n = 1, 2, 3 . . .

The general solution is a sum of standing waves:

y(x, t) =
∞∑
n=1

�
(
Ãne

iωnt
)
sin

nπx

L
, (14.13)

where ωn ≡ ω(kn) in general, and ωn = nπc/L
for a simple string satisfying the wave equation
(14.1).

As is apparent from Eq. (14.13), standing
waves are the product of a sinusoidal t depen-
dence and a sinusoidal x dependence. Periodi-
cally, when Ãeiωt is pure imaginary, y vanishes at
all positions x. Likewise, at equally spaced nodes
where kx = nπ, y vanishes at all times t. Al-
though there is no hint of propagation to the left
or right, each standing wave actually is the sum
of right- and left-propagating travelling waves
having the same frequency and amplitude. All
that is required to force any wave to be a stand-
ing wave is that the string be fixed at some point.

Equation (14.13) strongly resembles the
coupled oscillator Eq. (12.21), which expressed
the motion of a generalized coordinate as a sum
over normal mode oscillations. In fact, each
of the standing waves on a string is a normal
mode. There are an infinite number of normal
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modes because the string has an infinite num-
ber of degrees of freedom (it is equivalent to n
equally spaced point masses connected by (n+1)
massless springs, as n → ∞).

Aside from their infinite number, the nor-
mal modes of the simple string described by the
wave equation (14.1) have the same properties as
those of a coupled oscillator. Each is excited to a
degree required by the initial conditions. There-
after, each mode continues to oscillate without
interference from any other mode. The energy
given initially to that mode (on average divided
equally between T and U) is retained within that
mode forever.

14.4. Fourier expansion in normal modes.

We can use the initial conditions from
Eq. (14.3) to evaluate the constants Ãn in
Eq. (14.13):

y0(x) =
∑
n

�(Ãn) sin knx

v0(x) = −
∑
n

ωn%(Ãn) sin knx.
(14.14)

Again we take advantage of Fourier’s trick, al-
ready used in our solution (3.13) to the simple
oscillator with a nonlinear driving force. For
each line in Eq. (14.14), multiply both sides by
2
L sin mπx

L , 1 ≤ m ≤ ∞, and integrate over x
from 0 to L. Using the identity

2
L

∫ L

0

dx sin
mπx

L
sin

nπx

L
= δmn, (14.15)

all but one term in each right-hand sum vanishes,
leaving

�(Ãm) =
2
L

∫ L

0

dx sin
mπx

L
y0(x)

−ωm%(Ãm) =
2
L

∫ L

0

dx sin
mπx

L
v0(x).

(14.16)

14.5. Nodes and antinodes.

For the string we have been considering,
nodes (zeroes of y) occur by definition at the
fixed points x = 0 and x = L. If the string

is vibrating in a single normal mode with n >
1, there are additional nodes at intermediate
points. For example, when n = 3, nodes are
found at x = L

3 and 2L
3 as well.

For the same string, antinodes (zeroes of
∂y
∂x ) are found at x = L

6 ,
L
2 , and

5L
6 . More gener-

ally, what physical condition would produce an
antinode rather than a node at the boundary
x = L? An example would be a massive string
extending from x = 0 to x = L, connected to a
massless string with the same tension extending
from x = L to x = ∞. Here the slope of the
massive string must vanish at x = L: otherwise
a finite transverse force would be exerted on the
massless string, resulting in infinite acceleration.

Since massless strings are hard to find,
antinodal boundary conditions are more fre-
quently encountered in the longitudinal oscilla-
tions of elastic media – for example, sound waves
in air. There the phase velocity2 is c2 = E/ρ,
where ρ is the mass density and E, the elastic
modulus, is the ratio of stress to strain. (We
shall have more to say later about the definition
of these quantities.) For a perfect gas, c2 is equal
to the inverse of the adiabatic compressibility.

The classic example of an antinodal bound-
ary condition is found in an organ pipe – the
closed end is a node, the open end is (approx-
imately) an antinode. Here the fundamental
normal mode has only one quarter of its wave-
length contained within the pipe, as opposed to
one half wavelength for a pipe closed at both
ends. The (ω/2π = 30 Hz) introductory rumble
in Also Sprach Zarathustra can be sustained in
an open organ pipe only 2.8 m long.

14.6. Reflections of waves at boundaries.

When the boundary conditions are simple
(nodal or antinodal), reflections of transverse
waves on a string can be determined easily by
means of the “virtual string” construction. Con-
sider first a nodal boundary (y ≡ 0 at x = L).
Recall that the wave equation is solved by a
smooth shape propagating e.g. along +x̂. Con-
sider such a shape incident from the left (x < L)
upon the nodal boundary.
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The construction consists of hypothesizing
the existence of a “virtual string” in the forbid-
den (stringless) region x > L, and imagining that
the same but inverted shape is incident upon the
nodal boundary from the right. The two shapes
are timed to coincide when they reach x = L; the
resulting cancellation satisfies the nodal bound-
ary condition y = 0 there. Since the boundary
condition is satisfied, we have found the correct
solution. As the erect shape disappears into the
virtual region, the inverted shape leaves the vir-
tual region and appears in the physical region.
There the observed waveform is the sum of (what
remains of) the incident shape plus (the part of)
the inverted shape which has propagated in from
the virtual region. After the incident shape has
disappeared completely, the reflected shape is
fully inverted.

Similarly, the boundary condition ∂y
∂x = 0

at an antinodal boundary is satisfied by a non-
inverted shape on the virtual string; the shape
reflected from an antinodal boundary is erect.

When the boundary conditions are not sim-
ple, the reflected and transmitted amplitudes are
determined by matching the waveforms on either
side of the boundary. For example, when the
boundary consists of an interface between two
strings of equal tension τ but different mass per
unit length µ, we identify two matching condi-
tions. First, the string’s displacement must be
the same on either side, in order for the string
to remain continuous. Second, the string’s slope
must also be the same on either side of the
boundary. Otherwise there would be a finite net
transverse force on the infinitesimal element of
string at the boundary, resulting in an infinite
acceleration.

Without loss of generality, we place the
origin x = 0 at the interface between the two
strings. The matching conditions are

y(x=0−, t) = y(x=0+, t)
∂y

∂x
(x=0−, t) =

∂y

∂x
(x=0+, t).

(14.17)

Denote the string displacement in the region x <
0 by y1 and that in the region x > 0 by y2. For
x < 0 we must allow for both an incident wave

f1(t − x/c1) and a reflected wave g1(t + x/c1),
while for x > 0 we need only a transmitted wave
f2(t− x/c2). Equations (14.17) become

f1(t) + g1(t) = f2(t)
− 1

c1
f ′

1(t) +
1
c1
g′1(t) = − 1

c2
f ′

2(t).
(14.18)

Now differentiate both sides of the first equality
with respect to t, multiply the second equality
by c2, and add:

f ′
1(t) + g′1(t) = f ′

2(t)
c2
c1

(
−f ′

1(t) + g′1(t)
)
= −f ′

2(t)

(c2 + c1)g′1(t) = (c2 − c1)f ′
1(t)

g1(t) = Rf1(t) + const
g1(t) = Rf1(t)

R ≡ c2 − c1

c2 + c1
.

(14.19)

In the next to last line we set the constant of
integration equal to zero because it does not rep-
resent a wave. In the last line we introduced the
reflected amplitude ratio R.

Similarly, the transmitted wave is

f2(t) = T f1(t)

T ≡ 2c2

c1 + c2
,

(14.20)

where T is the transmitted amplitude ratio. In
terms of the incident wave f1, the full solution is

y1(x, t) = f1(t− x/c1) +Rf1(t+ x/c1)
y2(x, t) = T f1(t− x/c2).

(14.21)

For the above case in which the string
tensions τ1 and τ2 are equal, c1 ∝ µ

−1/2
1 and

c2 ∝ µ
−1/2
2 with the same constant of propor-

tionality. Defining

Z1 ≡ (µ1τ1)−1/2 Z2 ≡ (µ2τ2)−1/2, (14.22)

for this case τ1 = τ2 it is also possible to write

R =
Z2 − Z1

Z2 + Z1
T =

2Z2

Z2 + Z1
. (14.23)
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Had we worked the most general problem
in which the string masses per unit length and
the string tensions both are allowed to be differ-
ent on either side of the interface, we would have
obtained the results (14.21) and (14.23). The
quantity Z ≡ (µτ)−1/2 is called the characteris-
tic impedance of the string. It is usually more
illuminating to characterize a wave medium by
its phase velocity c and impedance Z, rather
than by the less fundamental properties µ and τ .

It is easy to identify three limiting cases of
Eqs. (14.21) and (14.23). When the impedance
Z2 vanishes (right-hand string is a brick wall),
R = −1 and T = 0. This is equivalent to the
nodal boundary for which we used the virtual
string construction. When Z2 is infinite (right-
hand string is a massless filament), R = +1 and
T = 2. The transmitted amplitude is twice the
incident amplitude. This is equivalent to the
antinodal boundary. Finally, when the charac-
teristic impedances are the same on either side of
the interface, even if the tensions and masses per
unit length are different there is no reflection.

The reflection formulae (14.21) and (14.23)
carry over to waves in other media. For exam-
ple, considering electromagnetic waves in uni-
form isotropic media, the electric field E plays
the role of the string displacement; the charac-
teristic impedance is the ratio of |E| to |H|. In
vacuum this ratio is equal to 377 ohms. For
electromagnetic waves in a coaxial cable, Z is
equal to the same ratio, which is equivalent to√
L/C, where L and C are the inductance and

capacitance per unit length. This ratio is 138
ohms × ln (b/a), where a and b are the inner and
outer cable radii. Of course, for either of these
electromagnetic examples, in vacuum the phase
velocity c is the speed of light. When an electro-
magnetic wave travels in a refractive medium,
both the phase velocity and the characteristic
impedance are reduced by the factor 1/n, where
n is the index of refraction.

As a final example, consider a one dimen-
sional Schrödinger wave that is incident on a
barrier V which is smaller than its energy E.
Here the wave’s phase velocity is directly propor-
tional to its wave number k ≡

√
2m(E − V )/h̄,

while the characteristic impedance is inversely
proportional to k.

15. Mechanics of solids.

15.1. Stress, strain, and waves in a one-
dimensional solid.

To set the stage for consideration of a
real (three-dimensional) elastic solid, first we
consider a hypothetical medium in which the
molecules are able to move only in one direction.
Let u(x) be the difference between the actual
and the equilibrium position x of a molecule.
The local distortion N ≡ ∂u

∂x of the medium is
called the strain.

Creating a strain requires exerting a force
on the medium. Consider a plane of area ∆A
with its normal along x. In this one-dimensional
case, the force exerted across that plane by one
element of the medium upon another is oriented
also in the x direction. This force per unit area
S is called the stress.

The elastic modulus E of the medium mea-
sures the size of the stress required to produce a
strain: S = EN . Since the strain is dimension-
less, both the stress and the elastic modulus have
units of pressure. In MKS this is the N/m2, or
pascal; one atmosphere is ≈ 105 pascals. Steel,
one of the stiffer structural materials, has an
elastic modulus of ≈ 2× 1011 pascals.

Consider a volume element ∆A∆x of the
medium, to which a stress S is applied to cre-
ate a strain N . Suppose that the molecules at
x = 0 are held stationary while the molecules
at x = ∆x, already displaced from their equi-
librium positions by u, are further displaced by
du. Before this extra displacement, the strain is
N = u

∆x . The work done corresponding to du is

dW = F du = S∆Adu

= EN∆Adu = E u
∆x∆Adu

W = 1
2E

∆A
∆x u

2 = 1
2E∆A∆xN2.

Per unit volume, the potential energy U ′ associ-
ated with the strain is 1

2EN
2 = 1

2E(
∂u
∂x )

2.
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The kinetic energy T ′ per unit volume is
1
2ρ(

∂u
∂t )

2, where ρ is the mass density. There-
fore, for this solid in which the molecules move
only along x, the Lagrangian per unit volume,
or Lagrangian density, is

L′ = 1
2ρ
(∂u
∂t

)2 − 1
2E
(∂u
∂x

)2
. (15.1)

This result is fully analagous to the string’s La-
grangian density (13.5). The same application
of the Euler-Lagrange equation (13.2) yields a
wave equation for this hypothetical solid:

∂2u

∂x2
+

ρ

E

∂2u

∂t2
= 0√

E

ρ
≡ c,

(15.2)

where c is the phase velocity. This is essentially
the same as the wave equation for the string.
However, in the solid, the molecular displace-
ment is along the direction of wave propagation,
as is true for a longitudinal wave, rather than
transverse to that direction as for the string.

15.2. Stress and strain tensors in a solid.

All of our remaining discussion of solids par-
allels that of section 15.1, except that the solid is
no longer hypothetical – its molecules will be al-
lowed to move in three dimensions. This greatly
complicates the mathematics, but the basic ideas
remain the same.

In a solid or a flowing viscous liquid, forces
∆F that act across a surface ∆A can have
components which are parallel as well as perpen-
dicular to the surface. The stress S relating one
to the other must be a second rank tensor:

∆F ≡ S ·∆A
(∆F )i = Sij∆Aj .

(15.3)

Here the first stress index i refers to the Carte-
sian component of the force, while the second
index j refers to the component of the normal to
the area being considered. As usual, summation
over repeated indices is implied.

The stress tensor must be symmetric for a
static solid. This can be appreciated by consid-
ering the four x1 or x2 faces of a cube of material

within the solid. If S21 were greater than S12,
the cube would experience a net torque in the
x3 direction.

In three dimensions, the displacement u of
each molecule from its equilibrium position is
a vector field depending on x1, x2, and x3.
Here the strain must be defined to take into ac-
count all three components of u and of x: it
is also a second rank tensor. In analogy to the
one-dimensional strain,

Nij ≡ 1
2

( ∂ui
∂xj

+
∂uj
∂xi

)
. (15.4)

In Eq. (15.4) we defined the strain tensor to
be manifestly symmetric. A possible component
of the form

∂ui
∂xj

− ∂uj
∂xi

cannot be allowed to contribute. If it were
nonzero but small, such a component would cor-
respond to an infinitesimal rotation. This could
not be part of a strain, because it is not a defor-
mation of the solid – no stress would be required
to produce it.

15.3. Fourth-rank tensor of elasticity.

In the one-dimensional case, the elastic
modulus was the constant of proportionality re-
lating the (scalar) stress to the (scalar) strain.
In three dimensions, both the stress and strain
are symmetric tensors. Even for isotropic ma-
terials, it will turn out that the six independent
elements of S and of N do not all have the same
constant of proportionality to each other. There-
fore the two must be related by a fourth rank
tensor, the elasticity E :

S ≡ EN
Sij = EijklNkl.

(15.5)

In analogy to the one-dimensional potential
energy per unit volume,

U ′ = 1
2NEN ,
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the three-dimensional potential energy density is

U ′ = 1
2NijEijklNkl

= 1
8

( ∂ui
∂xj

+
∂uj
∂xi

)
Eijkl

(∂uk
∂xl

+
∂ul
∂xk

)
.

(15.6)

The kinetic energy density is more straightfor-
ward:

T ′ = 1
2ρ
∂ui
∂t

∂ui
∂t

. (15.7)

As for the one-dimensional case, the Lagrangian
density L′ is T ′ − U ′.

15.4. Elasticity in a homogeneous isotropic
solid.

A homogeneous isotropic solid, unlike any
crystalline structure, has a fourth-rank tensor of
elasticity with components that, by definition,
are independent of particular axis directions.
The only available building block, aside from
scalars, is the unit matrix I with components
δij . The most general fourth rank tensor that
we are able to construct is

Eijkl = λδijδkl + µ(δikδjl + δilδjk). (15.8)

The last term is manifestly symmetric under in-
terchange of i and j in order to ensure that
S is symmetric. Because of the homogeneity
and isotropy, the two values λ and µ, called the
Lamé constants, are sufficient to determine all
81 elements of E .

Evaluating the stress,

Sij = EijklNkl

= λδijδklNkl + µ(δikδjl + δilδjk)Nkl

= λδij trN + 2µNij .

(15.9)

For example, comparing the first and third equal-
ities in Eq. (15.9), one has

S11 = λ(N11 +N22 +N33) + 2µN11

⇒ E1111 = λ+ 2µ
⇒ E1122 = λ

S12 = 2µN12 = E1212N12 + E1221N21

⇒ E1212 = E1221 = µ.
(15.10)

It is instructive to visualize the distortion
that, for example, is controlled by the elasticity
element E1111. Consider a solid cube of volume l3

with faces normal to x̂1, x̂2, or x̂3. Suppose that
the the cube is stretched in the x̂1 direction, so
that the diagonal strain element N11 is positive.
This stretching is caused by a stress S11. Fur-
ther assume that no other distortion is present:
all the other elements of N vanish. This means
that additional stresses must be exerted in or-
der to prevent the cube from shrinking in the x̂2

and x̂3 directions, as would be its natural ten-
dency. In other words, forces must be exerted to
hold the sides x2 = constant and x3 = constant
at their equilibrium separation l. The fact that
E1111 = λ + 2µ (Eq. (15.10)) means that the ef-
fective elastic modulus Yeff for this particular
stretching mode is equal to λ+ 2µ.

Similarly, for the same cube, consider a
shear displacement of the four faces normal to
x̂1 or x̂2 so that the face normal to x̂3 changes
in shape from a square to a rhombus. The four
sides of the rhombus make angles ±∆φ/2 with
the edges of the original square. This describes a
distortion corresponding to nonzero off-diagonal
strain elements N12 = N21 = ∆φ/2. All other
possible distortions (and strain elements) are as-
sumed to vanish. Because E1212 = 2µ, the stress
S12 = S21 which must be applied to create this
shear displacement is

S12 = E1212N12 + E1221N21

= µ
∆φ
2

+ µ
∆φ
2

= µ∆φ.

15.5. Young’s modulus and Poisson’s ratio.

The strains and stresses described in the
last two paragraphs may be straightforward to
visualize, but they are not the easiest quantities
to measure. A more practical approach to de-
termining the Lamé constants is to experiment
with a solid rectangular bar, for example hav-
ing relaxed square cross section w2 and length
l. One such experiment measures Young’s mod-
ulus Y , the ratio of the pressure F/w2 with
which the ends are pulled apart to the fractional
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increase ∆l/l in the bar’s length. Another mea-
sures Poisson’s ratio σ, the (negative) ratio of
the fractional change in w to that in l for the
same experiment:

Y ≡ F/w2

∆l/l

σ ≡ −∆w/w
∆l/l

.

(15.11)

For both experiments, no constraint is imposed
on the side walls of the bar.

The price paid for simplifying these mea-
surements is the task of finding λ and µ, given
Y and σ. Taking x̂1 to be the long axis of
the bar, we know that the only stress applied is
S11. Only the diagonal elements of the strain are
nonzero: since the bar is not twisted, by symme-
try the off-diagonal elements must vanish. By
definition of the Poisson ratio σ, N22 = N33 ≡
−σN11. And by definition of Young’s modulus
Y , S11 ≡ YN11. Starting from Eq. (15.9),

S11 = λ(N11 +N22 +N33) + 2µN11

Y = λ(1− σ − σ) + 2µ
S22 = λ(N11 +N22 +N33) + 2µN22

0 = λ(1− σ − σ)− 2µσ.

Subtracting the fourth from the second equality,

Y = 2µ(1 + σ)

µ =
Y

2(1 + σ)
.

(15.12)

With Eq. (15.12), the second equality alone
yields

λ =
2µσ

1− 2σ

=
σY

(1 + σ)(1− 2σ)
.

(15.13)

Equations (15.12) and (15.13) express the
Lamé constants in terms of Young’s modulus
and Poisson’s ratio. The inverse equations are

σ =
λ

2(λ+ µ)

Y = µ
3λ+ 2µ
λ+ µ

.

(15.14)

Note that 0 ≤ σ ≤ 1
2 . The upper limit is

obtained either if λ = ∞ (medium is incom-
pressible) or if µ = 0 (medium cannot support a
shear stress). Mechanical engineers often assume
that σ = 1

2 when better data are not available.
If the medium is incompressible, Young’s modu-
lus is not infinite; shear displacement still allows
the bar to elongate, with modulus Y = 3µ.

15.6. Waves in solids.

So far we have been discussing the statics
of three-dimensional solids. As an introduction
to the dynamics, we consider wave propagation
in a solid medium. As was the case for waves
on a string, we neglect the damping forces that
cause the wave eventually to die out. For a cast
bell with Q ≈ 103, able to ring for seconds at
a frequency of hundreds of Hz, this is a good
approximation.

The Lagrangian density is given by the dif-
ference of Eqs. (15.7) and (15.6). Since the
elasticity tensor Eijkl is symmetric under the in-
terchanges i ↔ j and k ↔ l for a solid that is
homogeneous and isotropic, we may replace Nij

and Nkl in Eq. (15.6) by ∂ui/∂xj and ∂uk/∂xl.
The potential energy density becomes

U ′ = 1
2

∂ui
∂xj

(
λδijδkl + µ(δikδjl + δilδjk)

)∂uk
∂xl

=
λ

2
∂ui
∂xi

∂uj
∂xj

+
µ

2
( ∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

)
.

(15.15)

The Lagrangian density is independent of
u. Since its dependence on ∂u/∂t is confined to
T ′, and its dependence upon ∂u/∂x is confined
to U ′, the Euler-Lagrange equation in the nth

component of u becomes

d

dt

∂T

∂(∂un

∂t )
=

d

dxk

∂U

∂(∂un

∂xk
)
. (15.16)

Using Eq. (15.7), the left hand side is

d

dt

(
ρ(x, t)

∂un
∂t

)
= ρ

∂2un
∂t2

+
∂ρ

∂t

∂un
∂t

.
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Since the time-varying component of ρ is as-
sumed to be a small fraction of its average, the
second term is negligible compared to the first.

The right hand side of Eq. (15.16) is

λ
d

dxn

(∂uj
∂xj

)
+ µ

d

dxk

(∂un
∂xk

+
∂uk
∂xn

)
=λ

∂2uj
∂xn∂xj

+ µ
( ∂2un
∂xk∂xk

+
∂2uk

∂xk∂xn

)
=(λ+ µ)

∂

∂xn

∂uk
∂xk

+ µ
∂2un
∂xk∂xk

=(λ+ µ)
∂

∂xn
(∇ · u) + µ∇2un.

Considered together, the Euler-Lagrange
equations for n = 1, 2, and 3 are equivalent
to the vector equation

ρ
∂2u
∂t2

= (λ+ µ)∇(∇ · u) + µ∇2u. (15.17)

Suppose first that the displacement field u
is divergenceless, so that there can be no com-
pression. Then any wave still present is a shear
wave. Equation (15.17) becomes

µ∇2u− ρ
∂2u
∂t2

= 0, (15.18)

satisfied by a shear wave with phase velocity√
µ/ρ.

Conversely, suppose that u is curlless so that
there can be no shear. Using the “bac cab” rule,

0 = ∇× (∇× u)

= ∇(∇ · u)−∇2u,

Eq. (15.17) becomes

(λ+ 2µ)∇2u− ρ
∂2u
∂t2

= 0. (15.19)

This describes a compression wave with the
larger phase velocity

√
(λ+ 2µ)/ρ. An earth-

quake including both compression and shear
waves might be felt first as a sharp compres-
sive jolt, followed by a rolling shear motion.

16. Mechanics of fluids.

16.1. Static fluids.

A fluid (liquid or gas) differs from a solid
in that it cannot support a shear stress if it is
static (i.e. if the fluid is not moving). In terms
of the Lamé constants, µ ≡ 0, so that Young’s
modulus Y = 0 and Poisson’s ratio σ = 1

2 .

Consider an infinitesimal cube of side l with
one corner at the origin. The x̂1 component of
the force F exerted on the cube is

F1 = l2
{(

S11(l, x2, x3)− S11(0, x2, x3)
)
+

+
(
S12(x1, l, x3)− S12(x1, 0, x3)

)
+

+
(
S13(x1, x2, l)− S13(x1, x2, 0)

)}
= l3

∂

∂xj
S1j .

Defining f to be the force per unit volume,

fi =
∂

∂xj
Sij

f̃ t = ∂̃tS,
(16.1)

where ∂̃t is a row vector with elements equal to
∂/∂xj , and, as usual, a sum is taken over the
repeated index j.

For a static fluid, the stress tensor has no off-
diagonal (shear) components. Also, the fluid’s
homogeneity requires the diagonal elements to
be equal. Then

S ≡ −p I,

where p is the pressure and I is the unit matrix.
Equation (16.1) reduces to

f = −∇p.

We add a (conservative) external force −ρ∇φ de-
rived from φ, a potential per unit mass. Since ρ
is the mass per unit volume, this additional term
is also a force per unit volume. Insisting that the
total force on any static element of fluid vanish,
we obtain the basic equation of fluid statics

0 = f = −∇p− ρ∇φ. (16.2)
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The two most common applications of Eq.
(16.2) involve an external force due to gravity,
for which the gravitational potential is φ = gz,
where z is the vertical coordinate. For an in-
compressible fluid (ρ = constant), integrating
Eq. (16.2),

0 = −∇p− ρ∇(gz)
−p0 = −p− ρg(z − z0)

p = p0 − ρg(z − z0).

This leads directly to Archimedes’ Principle,
which states that the buoyant force on a (par-
tially or totally) submerged object is the weight
of the water that it displaces.

For a perfect gas at constant temperature,
ρ = ρ0p/p0. Equation (16.2) yields

0 = −∇p− ρ0p

p0
∇(gz)

∂p/∂z

p
= −ρ0g

p0

p = p0e
−ρ0g(z−z0)/p0 .

Applying this result to the earth’s atmosphere,
where ρ0 ≈ 1 kg/m3, p0 ≈ 105 pascals, and
g ≈ 10 m/sec2, we estimate that the atmo-
sphere’s pressure is reduced by a factor e after
an elevation gain of p0/ρ0g ≈ 104 m.

16.2. Flow of a nonviscous fluid.

Fluids that are not static do support a shear
stress. Temporarily we choose to neglect this
fact, focusing on “dry” or runny liquids. Now
that it accelerates the fluid, we no longer require
the force per unit volume in Eq. (16.2) to vanish:

−∇p− ρ∇φ = ρ
dv
dt

−∇p
ρ

−∇φ =
∂v
∂t

+ (v · ∇)v.
(16.3)

This is the Navier-Stokes equation. On the right
hand side of the last equality we have written the
total time derivative of v as a convective deriva-
tive. The first term describes the explicit change
of velocity with time (“Spring approaches and
the river flows ever faster”). The second term

describes the change in v due to flow of the fluid
(“water moves from a pool to the rapids”).

We are faced with two unknown scalar fields
(p and ρ) and one unknown vector field (v), but
we have derived only one vector equation (16.3).
We need two additional scalar equations. The
first is an equation of state relating ρ to p, as
in the two examples of section (16.1). The sec-
ond is the equation of continuity expressing the
conservation of fluid molecules:

∂ρ

∂t
+∇ · (ρv) = 0. (16.4)

16.3. Steady flow of an incompressible nonvis-
cous fluid.

Under the assumption of steady flow, the
fluid can be moving, but its velocity field, and ev-
ery other characteristic of the fluid, possesses no
explicit time dependence. That is, ∂/∂t of any-
thing vanishes. Also in this section we assume
that the fluid is incompressible (ρ = constant).
The Navier-Stokes equation (16.3) becomes

−∇
(p
ρ
+ φ
)
= (v · ∇)v.

Using the vector identity

1
2∇(v · v) = (v · ∇)v + v × (∇× v),

the above equation may be rewritten as

∇
(p
ρ
+ φ+

v2

2
)
= v × (∇× v). (16.5)

Taking the dot product of v with Eq. (16.5),

0 = (v · ∇)
(p
ρ
+ φ+

v2

2
)

=
( d
dt

− ∂

∂t

)(p
ρ
+ φ+

v2

2
)

=
d

dt

(p
ρ
+ φ+

v2

2
)
.

(16.6)

This is the first form of Bernoulli’s equation. It
says that the quantity p/ρ+ φ+ v2/2 for an el-
ement of fluid is constant as the fluid moves – it
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is constant along streamlines. Bernoulli’s equa-
tion is an expression of energy conservation for
the fluid, with p/ρ and φ the potential terms,
and 1

2v
2 the kinetic. It is responsible for the

lift on airplane wings and the operation of spray
nozzles.

16.3. Steady irrotational flow of an incompress-
ible nonviscous fluid.

In this section we make the still stronger as-
sumption that the flow is irrotational, ∇×v ≡ 0.
Then the right-hand side of Eq. (16.5) vanishes
altogether, and

p

ρ
+ φ+

v2

2
= constant (16.7)

throughout the entire fluid. This is the second
form of Bernoulli’s equation.

With this strong set of assumptions, we can
solve for v without even considering the Navier-
Stokes equation. For steady flow the first term in
the continuity equation (16.4) vanishes, and for
an incompressible fluid the second term reduces
to

∇ · v = 0. (16.8)

If the flow is irrotational, we may write v =
−∇ξ, where ξ is the velocity potential. Equa-
tion (16.8) is equivalent to Laplace’s equation

∇2ξ = 0. (16.9)

Solving Laplace’s equation is a standard
problem in applied mathematics. A unique so-
lution exists whenever ξ or its normal derivative
is specified over an entire closed surface, part of
which may be at infinity. For fluid flow prob-
lems, it is more common to specify the normal
derivative of ξ (velocity normal to the boundary)
than it is to specify ξ itself. Analytic solutions
to Laplace’s equation may be obtained by series
expansions involving harmonic and hyperbolic
functions in Cartesian coordinates, Bessel and
Neumann functions in cylindrical coordinates,
or spherical harmonics in spherical coordinates.
For solutions of Laplace’s equations in two di-
mensions, conformal transformations are useful.

Numerical solutions to Laplace’s equation can
be obtained by a variety of methods. A simple
procedure is to set up a square or cubic grid and
demand (by iterative solution) that ξ at each
grid point be equal to the average of its nearest
neighbors.

16.5. Flow of a viscous fluid.

At last we no longer neglect the shear stress
in a flowing fluid. Consider two parallel planes
of fluid with area A separated by ∆z along their
normal. Suppose that the top plane is moving
with velocity ∆v = ∆vy ŷ while the bottom plane
is stationary. The first coefficient of viscosity η
is defined by

F

A
≡ η

∆vy
∆z

, (16.10)

where F is the force in the y direction exerted by
the top plane on the bottom plane. Identifying
F/A with a stress Syz, for this simple example
Eq. (16.10) may be written

Syz = η
∂vy
∂z

.

Symmetrizing,

Sij ≡ η
( ∂vi
∂xj

+
∂vj
∂xi

)
. (16.11)

This is the formal definition of η for an incom-
pressible fluid, in which viscous forces are caused
only by shear flow.

Considering once more the strain N defined
by Eq. (15.4), it is clear that Eq. (16.11) may
alternatively be written

Sij = 2η
∂Nij

∂t
. (16.12)

What happens if the fluid is both viscous and
compressible? Resistance to rapid compression
will be exerted as a result of its viscosity, in addi-
tion to that from its Lamé constant λ. Equation
(16.12) must be extended:

Sij = 2η
∂Nij

∂t
+ η′δij

∂

∂t
trN , (16.13)

where η′ is the second coefficient of viscosity.
Notice the similarity between Eq. (15.9) for a
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homogeneous isotropic solid and Eq. (16.13) for
a compressible liquid: apart from redefinition of
constants, the right hand side of (16.13) is just
the partial time derivative of that in (15.9). Note
also that the coefficient of η′δij in (16.13) is just
∇ · v, which vanishes for an incompressible fluid
according to Eq. (16.8).

The above are the mathematical definitions.
The physical picture is that thermal motion of
molecules causes them to be exchanged between
the strata of relatively moving fluid. These ex-
changed molecules retain their original average
velocity in the direction of slippage, tending to
equalize the velocities of the strata. One analogy
is that of two open coal trains passing each other
with workers shoveling coal back and forth.

In a perfect gas at fixed temperature, η is
independent of pressure p. This is because the
mean free path is inversely proportional to p,
while the density is directly proportional to p;
the viscosity is proportional to their product.

16.6. Vorticity.

The force f per unit volume on a vis-
cous fluid is the usual term −∇p − ρ∇φ from
Eq. (16.2) plus a term fv from the viscosity.
Combining Eqs. (16.1) and (16.13), and neglect-
ing possible spatial variation of the viscosity,

fv
i =

∂

∂xj

(
η(
∂vi
∂xj

+
∂vj
∂xi

) + η′δij(∇ · v)
)

= η
∂

∂xj

( ∂vi
∂xj

+
∂vj
∂xi

)
+ η′

∂

∂xi
(∇ · v)

= η∇2vi + (η + η′)
∂

∂xi
(∇ · v)

fv = η∇2v + (η + η′)∇(∇ · v).
(16.14)

Adding fv to the Navier-Stokes equation,

− ∇p
ρ

−∇φ+
η

ρ
∇2v +

η + η′

ρ
∇(∇ · v) =

=
∂v
∂t

+ (v · ∇)v.

(16.15)
Exploiting the same vector identity used to prove
Eq. (16.5), the last term in Eq. (16.15) may be
rewritten as 1

2∇v2−v×(∇×v). Our plan is take

the curl of Eq. (16.15) after this modification. All
the terms proportional to gradients will vanish.
Again assuming that the fluid is incompressible
so that ρ is constant, we are left with the curl of

η

ρ
∇2v =

∂v
∂t

− v × (∇× v). (16.16)

Taking said curl, and defining the vorticity
�Ω ≡ ∇× v, we obtain

η

ρ
∇2�Ω =

∂�Ω
∂t

−∇× (v × �Ω)

=
∂�Ω
∂t

+∇× (�Ω× v).

(16.17)

In a nonviscous fluid for which η = 0 , the left
hand side vanishes. It will be seen that the right
hand side can lead to persistent vortices in the
fluid.

16.7. Diffusion of the vorticity: Reynolds num-
ber.

Invoking a similar vector identity,

∇× (�Ω× v) = (v · ∇)�Ω− (�Ω · ∇)v +

+ �Ω(∇ · v)− v(∇ · �Ω),

we see that the last term in the identity vanishes
by definition of �Ω, and the second last term
vanishes according to the continuity equation
(16.4) when the fluid is incompressible. Equa-
tion (16.17) becomes

η

ρ
∇2�Ω =

∂�Ω
∂t

+ (v · ∇)�Ω− (�Ω · ∇)v

=
d�Ω
dt

− (�Ω · ∇)v

d�Ω
dt

=
η

ρ
∇2�Ω+ (�Ω · ∇)v.

(16.18)

In some cases the velocity has no spatial de-
pendence along the direction of the vorticity. For
example, v may be oriented in the x-y plane and
may depend only upon x and y, in which case
�Ω is oriented along ẑ. In these special instances,
Eq. (16.18) reduces to

d�Ω
dt

=
η

ρ
∇2�Ω. (16.19)
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This is a diffusion equation for each component
of the vorticity, in which the diffusion constant
D ≡ η/ρ. Unlike more traditional applications
of this equation, e.g. the diffusion of impurity
gas molecules, Eq. (16.19) describes the diffu-
sion of vorticity. The small whirlpool formed
when a rower’s oar is lifted from the water of a
still pond diffuses outward into a larger, slower
vortex and eventually disappears. On the other
hand, Eq. (16.19) requires the vorticity to persist
if η/ρ may be neglected.

Since η/ρ has units of m2/sec, we must con-
struct another quantity of the same dimensions
with which to compare it. Consider a pipe of
circular cross section with diameter d, in which
fluid flows with average velocity V . Then V d
has the same dimensions as η/ρ. The ratio of
the two is called the Reynolds number Re:

Re ≡
ρV d

η
. (16.20)

The Reynolds number is large when η/ρ is small,
and vice versa.

With the help of Eq. (16.19), we can guess
what happens in the pipe. If Re is small, the
velocity η/ρd characterizing diffusion of the vor-
ticity is much faster than the flow velocity. If
a small vortex is present, it spreads out quickly
along the pipe and dissipates. The absence of
vortices results in laminar flow, for which the ve-
locity field is easy to calculate. In smooth pipes,
laminar flow occurs for Reynolds numbers up to
surprisingly large values, of order a few hundred.
But when Re is large (above 10,000), an element
of fluid flows so fast that the vorticity cannot
spread out rapidly enough to escape it. This is
turbulent flow. It is so difficult to model that re-
search in this area is a frontier of mathematical
physics. For example, it is virtually impossible
to calculate and predict the eddies that cause a
flag to flutter.

– End –


